	Data and Identification		Model-Based Analysis	Conclusion
0000	0000000	0000000	000000	

Cashless Payment and Financial Inclusion

Shumiao Ouyang

Saïd Business School, University of Oxford

TSE Finance Seminar March 2024

1

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
●000		00000000	000000	O
Background				

• The financial inclusion challenge

- Extending credit access to the underprivileged
- The issue has received wide attention but faces a number of challenges

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
●000		00000000	000000	O
Background				

- The financial inclusion challenge
 - Extending credit access to the underprivileged
 - The issue has received wide attention but faces a number of challenges
- BigTech credit is booming globally, potentially addressing the inclusion challenge
 - BigTech firms usually provide both payment and credit services
 - Mobile cashless payment has accelerated the shift from cash to cashless society

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
●000		00000000	000000	O
Background				

- The financial inclusion challenge
 - Extending credit access to the underprivileged
 - The issue has received wide attention but faces a number of challenges
- BigTech credit is booming globally, potentially addressing the inclusion challenge
 - BigTech firms usually provide both payment and credit services
 - Mobile cashless payment has accelerated the shift from cash to cashless society

Research Questions

Is information from payment flows a causal factor behind BigTech credit expansion? Does the expansion benefit the underprivileged consumers?

Introduction	Data and Identification		Model-Based Analysis	Conclusi
000	0000000	0000000	000000	0

Causal Link between Cashless Payment and Credit Provision

Introduction 0000	Data 000	and Identificati	ion	IV Analysis 00000000		Model-Based Ai	nalysis	Conclusio 0
Causal	Link bet	ween (Cashless	Payment	and	Credit	Provision	

• Requires an exogenous shock to the cashless payment activity

Introduction 0●00		Data and Identi 00000000		IV Analysis 0000000	Model-Based Analysis 000000	Conclusio O
-	 					

Causal Link between Cashless Payment and Credit Provision

- Requires an exogenous shock to the cashless payment activity
- Requires detailed individual-level data on payment, credit, and so on

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusi
0●00	00000000	00000000	000000	O

Causal Link between Cashless Payment and Credit Provision

- Requires an exogenous shock to the cashless payment activity
- Requires detailed individual-level data on payment, credit, and so on
- A natural experiment + rich administrative data from Alipay

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
00●0		00000000	000000	O
The Main Fi	ndings			

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
00●0		00000000	000000	O
The Main F	indings			

- Cashless payment flow facilitates credit provision and take-up
 - $\,\circ\,$ Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow\,56.3\%$
 - $\,\circ\,$ In-person payment amount $\uparrow\,1\%\to$ credit line $\uparrow\,0.41\%$
 - More credit usage for both in-person and online purchases

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
00●0		00000000	000000	O
The Main Fi	ndings			

- Cashless payment flow facilitates credit provision and take-up
 - $\,\circ\,$ Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow\,56.3\%$
 - $\circ~$ In-person payment amount $\uparrow 1\% \rightarrow$ credit line $\uparrow 0.41\%$
 - More credit usage for both in-person and online purchases
- BigTech takes advantage of information in the payment flow
 - $\circ~$ Beyond what is in credit usage, repayment, and assets under management (AUM)

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
00●0		00000000	000000	O
The Main Fi	ndings			

- Cashless payment flow facilitates credit provision and take-up
 - $\,\circ\,$ Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow\,56.3\%$
 - $\,\circ\,$ In-person payment amount $\uparrow\,1\%\,\rightarrow\,$ credit line $\uparrow\,0.41\%$
 - · More credit usage for both in-person and online purchases
- BigTech takes advantage of information in the payment flow
 - $\circ~$ Beyond what is in credit usage, repayment, and assets under management (AUM)
 - o I build and estimate a simple model to quantify the value of payment data

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	000000	O
The Main F	indings			

- Cashless payment flow facilitates credit provision and take-up
 - $\,\circ\,$ Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow\,56.3\%$
 - $\,\circ\,$ In-person payment amount $\uparrow\,1\%\,\rightarrow\,$ credit line $\uparrow\,0.41\%$
 - · More credit usage for both in-person and online purchases
- BigTech takes advantage of information in the payment flow
 - $\circ~$ Beyond what is in credit usage, repayment, and assets under management (AUM)
 - o I build and estimate a simple model to quantify the value of payment data
- The above effects are present mostly among the financially underserved
 - Stronger credit provision effects on the less educated and older

Introduction	Data and Identification		Model-Based Analysis	Conclusion
0000	0000000	0000000	000000	0

Two Closely Related Papers

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
000•		00000000	000000	0
Two Closely	Related Papers			

- Parlour, Rajan, and Zhu (2022)
 - A model of competition between financial intermediations for payment processing
 - Key premise: payment flow data contain information on consumers' credit quality

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
000●		00000000	000000	O
Two Closely	Related Papers			

- Parlour, Rajan, and Zhu (2022)
 - A model of competition between financial intermediations for payment processing
 - · Key premise: payment flow data contain information on consumers' credit quality
 - My paper: Provides direct evidence supporting the premise

- Parlour, Rajan, and Zhu (2022)
 - A model of competition between financial intermediations for payment processing
 - · Key premise: payment flow data contain information on consumers' credit quality
 - My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
 - Uncovers the synergy between FinTech small-business lending and cashless payment

- Parlour, Rajan, and Zhu (2022)
 - A model of competition between financial intermediations for payment processing
 - · Key premise: payment flow data contain information on consumers' credit quality
 - My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
 - Uncovers the synergy between FinTech small-business lending and cashless payment
 - My paper: Shows causal effect of cashless payment on consumer credit provision

- Parlour, Rajan, and Zhu (2022)
 - A model of competition between financial intermediations for payment processing
 - Key premise: payment flow data contain information on consumers' credit quality
 - My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
 - Uncovers the synergy between FinTech small-business lending and cashless payment
 - My paper: Shows causal effect of cashless payment on consumer credit provision
 - Better firms benefit more from cashless payment adoption

- Parlour, Rajan, and Zhu (2022)
 - A model of competition between financial intermediations for payment processing
 - · Key premise: payment flow data contain information on consumers' credit quality
 - My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
 - Uncovers the synergy between FinTech small-business lending and cashless payment
 - My paper: Shows causal effect of cashless payment on consumer credit provision
 - o Better firms benefit more from cashless payment adoption
 - My paper: The underprivileged get more credit access after payment adoption

- Parlour, Rajan, and Zhu (2022)
 - A model of competition between financial intermediations for payment processing
 - Key premise: payment flow data contain information on consumers' credit quality
 - My paper: Provides direct evidence supporting the premise
 - Ghosh, Vallee, and Zeng (2022)
 - Uncovers the synergy between FinTech small-business lending and cashless payment
 - My paper: Shows causal effect of cashless payment on consumer credit provision
 - o Better firms benefit more from cashless payment adoption
 - My paper: The underprivileged get more credit access after payment adoption
 - See the paper for a more comprehensive list of references

	Data and Identification		Model-Based Analysis	Conclusion
0000	•000000	0000000		

Data and Identification

 Introduction
 Data and Identification
 IV Analysis
 Model-Based Analysis
 Conclusion

 000
 0000000
 0000000
 000000
 0

Observation 1: Rise of Cashless Payments

Source: US Federal Reserve, PBOC, World Bank

Types of Mobie Payments Mobie Payments Penetration across Countries Declining Use of Cash in the US

Data and Identification	Model-Based Analysis	Conclusion
000000		

- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features

	Data and Identification		Model-Based Analysis	Conclusion
0000	000000	0000000	000000	0

- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
 - o 72% have access to Huabei credit line

Data and Identification	Model-Based Analysis	Conclusion
000000		

- Alipay: the largest mobile wallet with more than 1 billion users (Alipay's Business Structure)
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
 - 72% have access to Huabei credit line
- Among those with Huabei access
 - $\,\circ\,$ 95% have used the credit, with an average monthly usage of 533 CNY (\sim 80 USD)

	Data and Identification		Model-Based Analysis	Conclusion
0000	000000	0000000	000000	0

- Alipay: the largest mobile wallet with more than 1 billion users (Alipay's Business Structure)
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
 - 72% have access to Huabei credit line
- Among those with Huabei access
 - $\,\circ\,$ 95% have used the credit, with an average monthly usage of 533 CNY (\sim 80 USD)
- Even among those who do not have a credit card on file
 - 64% have access to Huabei credit li

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000	00000000	00000000	000000	O
Data				

• Representative Random Sample from Population

- $\circ~41,485$ Alipay users with in-person cashless payment activities
- o Individual-level monthly panel data with detailed information
 - Personal characteristics
 - Payment, credit, investment, and other digital footprints

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000	00000000	00000000	000000	O
Data				

• Representative Random Sample from Population

- o 41,485 Alipay users with in-person cashless payment activities
- o Individual-level monthly panel data with detailed information
 - Personal characteristics
 - Payment, credit, investment, and other digital footprints
- Sample Period
 - From May 2017 to September 2020
 - · Both mobile payment and bike-sharing industries develop fast

My Solution for the Identification Challenge

log(1 + ln-Person Non-Bike Payment Flow)_{*i*,*t*} = $\alpha_0 + \sum_{\tau=-5}^{\tau} \beta_{\tau} \cdot \mathbb{1}(t = \tau) + \beta_5 \cdot \mathbb{1}(t \ge 5) + \delta_i + \mu_t + \varepsilon_{i,t}$

	0000000	0000000	000000	0			
The Relevance Condition							

	log(1 + In-	$log(1 + In-Person Payment Flow)_{i,t}$			
	(1)	(2)	(3)		
$log(Bike Placement)_{c,t}$	0.041***	0.011			
	(0.010)	(0.009)			
Bike User $_i imes log(Bike Placement)_{c,t}$		0.103***			
		(0.017)			
After First Bike Usage _{i,t}			-0.123		
,			(0.161)		
After First Bike Usage _{i,t} \times log(Bike Placement) _{c,t}			0.049***		
			(0.014)		
Individual FE	YES	YES	YES		
Year-Month FE	YES	YES	-		
$City imesYear ext{-Month}FE$	NO	NO	YES		
Clustered by City and Year-Month	YES	YES	YES		
Sample	Full Sample	Full Sample	Bike Users		
Observations	1,238,309	1,238,309	435,872		
Adjusted R ²	0.551	0.552	0.490		
	* . 0 1	**	*** . 0.01		

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

The Exclusion Restriction

	$log(1 + Credit Line)_{i,t}$			
	(1)	(2)	(3)	
$log(Bike Placement)_{c,t}$	0.027***	0.009		
	(0.008)	(0.010)		
Bike User _i \times log(Bike Placement) _{c,t}		0.060**		
		(0.023)		
After First Bike Usage _{i,t}			-0.231	
			(0.157)	
After First Bike Usage _{<i>i</i>,t} × <i>log</i> (Bike Placement) _{<i>c</i>,t}			0.070***	
			(0.013)	
Individual FE	YES	YES	YES	
Year-Month FE	YES	YES	-	
City $ imes$ Year-Month FE	NO	NO	YES	
Clustered by City and Year-Month	YES	YES	YES	
Sample	Full Sample	Full Sample	Bike Users	
Observations	1,238,309	1,238,309	435,872	
Adjusted R ²	0.800	0.800	0.774	
Note:	*p < 0.1	; **p < 0.05; *	***p < 0.01	

Bike-Related Characteristics

Characteristics and Exclusion Restriction

Bike Usage and Exclusion Restriction

	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000	0000000	0000000	000000	

IV Analysis

	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000	0000000	0000000	000000	0

In-Person Payment Facilitates Credit Provision

		Credit Access _{i.}	t	log(Credit Line) _{i,t}					
	(1)	(2)	(3)	(4)	(5)	(6)			
Panel A. Two-Stage Least Squares									
Measure of In-Person Payment $Flow_{i,t}$	0.086***	0.563***	0.087**	0.281***	2.033**	0.409***			
	(0.024)	(0.175)	(0.043)	(0.085)	(0.766)	(0.132)			
Panel B. F	irst Stage for	Measure of In-	Person Payme	nt Flow _{i,t}					
log(Bike Placement) _{c,t}	0.041***	0.006***	0.030***	0.043***	0.006***	0.024***			
	(0.010)	(0.002)	(0.009)	(0.012)	(0.002)	(0.008)			
F-Statistic	15.5	10.8	11.2	13.9	10.6	9.1			
Adjusted R ²	0.551	0.465	0.432	0.527	0.439	0.401			
	Panel C.	Ordinary Least	Squares						
Measure of In-Person Payment $Flow_{i,t}$	0.010***	0.062***	0.007***	0.022***	0.072***	0.029***			
<i></i>	(0.001)	(0.007)	(0.001)	(0.003)	(0.023)	(0.002)			
Adjusted R ²	0.740	0.741	0.700	0.836	0.835	0.841			
Form of the IPF Measure	log(1+x)	$\mathbb{1}(x > 0)$	log(x)	log(1+x)	$\mathbb{1}(x > 0)$	log(x)			
Individual FE	YES	YES	YES	YES	YES	YES			
Year-Month FE	YES	YES	YES	YES	YES	YES			
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES			
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credit			
Observations	1,238,309	1,238,309	662,010	779,283	779,283	516,570			
Note:				*p < 0.1;	**p < 0.05;	***p < 0.01			

IV-OLS Comparison

nce Past Payments Bike Usage

Introduction 0000		Data and Identification 0000000			IV Analysis 0000000	Model-Based Analysis 000000	Conclusion O	
	-			_	-			

Information Channel vs. Enforcement Channel

	Credit Access _{i,t}		<i>log</i> (Cred	it Line) _{i,t}
	(1)	(2)	(3)	(4)
Panel A. Two-Stage Leas	t Squares - Inf	ormation Char	nnel	
$log(1 + In-Person Noncredit Payment Flow)_{i,t}$	0.094***	0.095***	0.329***	0.358***
	(0.024)	(0.026)	(0.103)	(0.124)
$log(1 + In-Person Credit Payment Flow)_{i,t}$		-0.005		-0.044
· · · · · · · · · · · · · · · · · · ·		(0.006)		(0.029)
Panel B. Two-Stage Least	t Squares - <mark>En</mark> f	f <mark>orcement</mark> Cha	nnel	
$log(1 + In-Person Payment Flow)_{i,t}$	0.097***	0.098***	0.280***	0.282***
	(0.025)	(0.026)	(0.085)	(0.086)
$log(1 + Assets under Management)_{i,t}$	-0.005	-0.008	-0.015	-0.026*
	(0.004)	(0.005)	(0.011)	(0.013)
Whether AUM Include Account Balance	NO	YES	NO	YES
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Observations	1,238,309	1,238,309	779,283	779,283
Note [.]		*n < 0.1	**n < 0.05	***n < 0.01

 $p < 0.1, p < 0.05, \cdots$ p < 0.0
	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000	0000000	000000	000000	0

In-Person Payment Increases Credit Take-Up

	Virtual Credit	Card Share _{i,t}	Compulsive Spe	nding Share _{i,t}
	In-Person Payment	Online Payment	In-Person Payment	Online Payment
	(1)	(2)	(3)	(4)
	Panel A. Two-Sta	ge Least Squares		
$log(1 + In-Person Payment Flow)_{i,t}$	0.094***	0.030***	0.004	0.002
	(0.034)	(0.011)	(0.010)	(0.002)
Panel B.	First Stage for $log(1$	+ In-Person Payme	ent Flow) _{i,t}	
$log(Bike Placement)_{c,t}$	0.028***	0.064***	0.028***	0.064***
	(0.009)	(0.014)	(0.009)	(0.014)
F-Statistic	11.0	22.7	11.0	22.7
Adjusted R ²	0.434	0.505	0.434	0.505
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Observations	662,010	806,938	662,010	806,938

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

More Precise Information, More Credit to the Less Creditworthy?

• • • Cash User (Creditworthiness is Hidden)

- • Cash User (Creditworthiness is Hidden)
- ---New Digital Money Adopter (Knows if Creditworthiness ≥ 0.25)

More Precise Information, More Credit to the Less Creditworthy?

	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000	0000000	00000000	000000	0

The Financially Underserved Segments

		Financial Service Usage			Financial Literacy			
	# Debit Cards;	$log(1 + Max. AUM)_i$	# Investment Months;	Pay with Real Name _i	Use Own Account;	Complete Profile _i		
	(1)	(2)	(3)	(4)	(5)	(6)		
Low Education;	-0.694***	-1.078***	-3.076***	-0.119***	-0.087***	-0.122***		
	(0.046)	(0.075)	(0.282)	(0.006)	(0.008)	(0.008)		
Older than Median _i	-0.863***	-0.671***	-2.512***	-0.191***	-0.223***	-0.089***		
	(0.025)	(0.045)	(0.141)	(0.006)	(0.009)	(0.005)		
Gender FE	YES	YES	YES	YES	YES	YES		
City FE	YES	YES	YES	YES	YES	YES		
Year-Month FE	YES	YES	YES	YES	YES	YES		
Clustered by City	YES	YES	YES	YES	YES	YES		
Observations	39,459	39,459	39,459	39,459	39,459	39,459		
Adjusted R^2	0.081	0.052	0.036	0.081	0.101	0.046		
					at a state			

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

Introduction 0000	Data and Identification	IV Ar 0000	nalysis 20000	Model-Based Ar 000000	nalysis	Conclusic O
Financia	al Inclusion: The	Less Edu	cated Ge	t More C	Credit	
		Credit /	Access _{i,t}	log(Crea	lit Line) _{i,t}	
		(1)	(2)	(3)	(4)	
	F	Panel A. Two-Stag	ge Least Squares			
la	$p_g(1 + \text{In-Person Payment Flow})_{i,t}$	0.093***	0.024	0.334***	0.038	
		(0.027)	(0.044)	(0.109)	(0.073)	
	Panel B. First	t Stage for $log(1 -$	+ In-Person Payme	ent Flow) _{i,t}		
la	og(Bike Placement) _{c,t}	0.039***	0.043***	0.039***	0.053***	
		(0.010)	(0.013)	(0.011)	(0.014)	
F	-Statistic	13.7	10.9	11.6	14.2	
A	Adjusted R ²	0.554	0.563	0.528	0.483	
Ir	ndividual FE	YES	YES	YES	YES	
Y	′ear-Month FE	YES	YES	YES	YES	
C	lustered by City and Year-Month	YES	YES	YES	YES	
S	ample	Full Sample	Full Sample	Has Credit	Has Credit	
S	ubsample	Low Education	High Education	Low Education	High Education	
C	Observations	1,065,769	171,938	657,878	121,194	

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

	Data and Identification	Model-Based Analysis	Conclusion
0000		•00000	

Model-Based Analysis

Introduction I	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	○●○○○○	0
Why Do We I	Need a Model?			

• What we have learned

- Exogenous payment adoption shock leads to more credit provision
- Positive credit provision effects are stronger for the underserved

Why Do We Need a Model?

What we have learned

- Exogenous payment adoption shock leads to more credit provision
- Positive credit provision effects are stronger for the underserved

• What we do not know yet

- Real effects: consumer surplus, lender profit, default rate
- Mechanism: why payment data play an important role
- Quantification: the information value of payment data

Why Do We Need a Model?

What we have learned

- Exogenous payment adoption shock leads to more credit provision
- Positive credit provision effects are stronger for the underserved

• What we do not know yet

- Real effects: consumer surplus, lender profit, default rate
- Mechanism: why payment data play an important role
- Quantification: the information value of payment data
- I try to achieve these goals with a simple structural model

0000	0000000	0000000	00000	0
Economy	of the Model			

Economy of the Model

- The cashless payment company as the only lender
 - o Offers a personalized credit line to each borrower
 - Not rely on credit history or collateral information
 - Same interest rate for everyone
 - Different credit limits for different borrowers
 - Sufficient funds

Introduction Data and Identification IV Analysis Model-Based Analysis Conclusion o

Economy of the Model

- The cashless payment company as the only lender
 - o Offers a personalized credit line to each borrower
 - Not rely on credit history or collateral information
 - Same interest rate for everyone
 - Different credit limits for different borrowers
 - Sufficient funds
- · Borrowers' consumption gradually shifts from cash to digital money
 - Cash user: lender does not know any information
 - New digital money adopter: lender knows only the personal characteristics
 - Digital money user: lender knows both personal characteristics and consumption

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000	00000000	00000000	000●00	O
Overview o	f the Model			

• There are two periods in the model Timeline: Details

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000	00000000	00000000	000●00	O
Overview of	the Model			

- There are two periods in the model Timeline: Details
 - First period: credit line provision, first income, credit usage, and consumption
 - Second period: second income, credit payoff or default

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	0000●0	O
Estimation	Results			

Estimated Pa	arameter	Values Estimation Procedure and Identification Specifications Summary Statistics
Parameter	Value	Description
σ_{ϵ}	864.8	Standard deviation of the unobservant idiosyncratic income shocks
σ_y	1,344.0	Standard deviation of the unobservant type of borrowers
A	4,692.0	External funding that can be used to pay off the credit balance
D	57,039.7	Utility cost to a borrower if she defaults in the second period
R_{ols}^2	0.0807	R squared of the OLS regression that predicts income

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	0000●0	O
Estimation	Results			

- Estimated Parameter Values Estimation Procedure and Identification • Specifications Summary Statistics Value Parameter Description 864.8 Standard deviation of the unobservant idiosyncratic income shocks σ_{ϵ} 1.344.0 Standard deviation of the unobservant type of borrowers σ_{v} 4.692.0 External funding that can be used to pay off the credit balance Α D 57.039.7 Utility cost to a borrower if she defaults in the second period R_{ols}^2 R squared of the OLS regression that predicts income 0.0807
- Fitness of the model
 - The model yields a prediction for the equilibrium credit line offered to each borrower
 - $\,\,$ Predicted credit lines explain 12% of cross-sectional variation in the data

$$\begin{array}{l} \mathsf{Credit} \ \mathsf{Line}_i^{\textit{observed}} = 1777.70 + \begin{array}{c} \mathsf{0.94} \cdot \mathsf{Credit} \ \mathsf{Line}_i^{\textit{cashless}} \\ (89.81) \quad (0.01) \end{array}$$

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		0000000	00000●	O
Counterfactu	als			

• We are interested in the information value of payment data

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	00000●	O
Counterfactu	als			

- We are interested in the information value of payment data
- The key counterfactual: new digital money adopter
 - Borrowers still borrow from the lender, but consume with cash
 - Lender knows borrowers' personal characteristics, but not their consumption

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	00000●	O
Counterfactu	als			

- We are interested in the information value of payment data
- The key counterfactual: new digital money adopter
 - Borrowers still borrow from the lender, but consume with cash
 - Lender knows borrowers' personal characteristics, but not their consumption
 - Mean Mean Difference **Relative Change** New DM Adopter DM User Credit Line; 3.619.9 57.7% 5.707.5 2.087.6 Used Credit; 1.562.6 1.780.4 2177 13.9% Consumer Welfare; 1.209.9 1.222.5 12.6 1.0% Lender Profit; 45.3 50.6 52 11.6% 1.4% Total Welfare; 1.255.2 1.273.0 17.8 Annualized Default Rate; 0.51% 0.58% 0.07% 13.3%
- Steady State Comparison: New Digital Money Adopter vs. Digital Money User

Expectation of Default Distributional Effects

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	000000	•
Conclusion				

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	000000	•
Conclusion				

- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	000000	●
Conclusion				

- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?
- This paper argue that answer to both questions is YES
 - With unique data and a new identification strategy
 - $\circ~$ The first paper showing that payment information fuels BigTech credit to households

Introduction	Data and Identification	IV Analysis	Model-Based Analysis	Conclusion
0000		00000000	000000	●
Conclusion				

- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?
- This paper argue that answer to both questions is YES
 - With unique data and a new identification strategy
 - $\circ~$ The first paper showing that payment information fuels BigTech credit to households
- Policy implications
 - Service bundling in payment systems brings new opportunities
 - Mobile payment can facilitate sustainable and inclusive finance

Strands of Related Literature (See the paper for a complete list of papers)

- Digital Payment and Credit: Parlour et al. (2022), Ghosh et al. (2022)
 - This paper: Direct causal evidence in the consumer credit market
- Payment Adoption on Consumers: Mbiti and Weil (2015), Bachas et al. (2021), Riley (2018), Hong et al. (2020), Suri and Jack (2016), Brunnermeier and Payne (2022), Agarwal et al. (2021)
 This paper: Value of payment data and power of service bundling
- Consequences of Consumer Credit: Zinman (2015), Karlan and Zinman (2010), Morse (2011), Melzer (2011), Ausubel (1991), Di Maggio and Yao (2020), Di Maggio et al. (2022)
 - This paper: Effects of BigTech consumer credit
- Determinants of Consumer Credit: Rampini and Viswanathan (2020), Chatterjee et al. (2020), Liberti and Petersen (2019), Berg et al. (2020), Rishabh (2022), Fuster et al. (2022)
 - This paper: Information channel vs. enforcement channel

Different Types of Mobile Payments

(a) *M-Pesa* and Mobile Phone

(b) Apple Pay, Card, and Phone

(c) Alipay and Smart Phone

Mobile Payment Penetration across Countries

(a) 2021

Source: Statista Digital Market Outlook, World Bank

Mobile Payment Penetration across Countries

(a) 2021

Go Back

Source: Statista Digital Market Outlook, World Bank

<mark>(b)</mark> 2019

Declining Use of Cash in the US

Americans have become more likely to say they don't use cash for purchases in a typical week

% of U.S. adults who say they make ___ (including things like groceries, gas, services or meals) in a typical week using cash

Note: Respondents who did not give an answer are not shown. Source: Survey of U.S. adults conducted July 5-17, 2022.

PEW RESEARCH CENTER

Alipay: the "All-in-One" Approach to Mobile Payment

Source: IPO Prospectus of Ant Group, 2020

Features of Alipay's Huabei Credit Line

- No active application required
 - Qualification status and credit line instantly available
- No price discrimination
 - 0.05% daily rate (18.25% annually)
 - Interest-free period of up to 40 days
- Excellent risk management
 - Delinquency rate as of June 2019
 - Huabei: 1.16%
 - Credit cards issued by public banks in China: 1.21% to 2.49%

Go Back

BigTech Credit is Booming Globally

Figure 1

Big Tech Credit Is Overtaking Fintech Credit

(a) BigTech and Fintech Credit Source: Cornelli et al. (2020), CESifo Forum

Figure 2

Big Tech Credit Is Booming in Asia, the United States and Africa

(b) Global Boom in BigTech Credit

Summary Statistics

	Ν	Mean	Std	Min	p25	Median	p75	Max
Individual Level								
# Active months;	41,485	31.86	11.38	1.00	24.00	37.00	41.00	41.00
Is Male;	41,214	0.54	0.50	0.00	0.00	1.00	1.00	1.00
Low Education,	41,459	0.88	0.33	0.00	1.00	1.00	1.00	1.00
Birth Year;	41,214	1,983.38	12.75	1,930.00	1,974.00	1,985.00	1,993.00	2,014.00
Bike User;	41,485	0.29	0.45	0.00	0.00	0.00	1.00	1.00
City-Month Level								
$log(Bike Placement)_{c,t}$	12,665	7.08	3.39	0.00	4.11	7.85	9.91	13.91
Individual-Month Level								
Credit Access _{i,t}	1,321,837	0.62	0.49	0.00	0.00	1.00	1.00	1.00
log(Credit Line) _{i,t}	819,812	7.88	1.58	3.00	6.91	8.13	9.13	11.02
$log(In-Person Payment Flow)_{i,t}$	688,428	5.70	2.29	-4.61	4.31	6.04	7.27	15.88
$log(Online Payment Flow)_{i,t}$	843,993	5.76	1.80	-4.61	4.70	5.88	6.93	15.74
Virtual Credit Card Share in In-Person Payment	688,428	0.34	0.42	0.00	0.00	0.04	0.82	1.00
Virtual Credit Card Share in Online Payment _{i.t}	843,993	0.33	0.41	0.00	0.00	0.01	0.80	1.00
Compulsive Spending Share in In-Person Payment _{i,t}	688,428	0.03	0.14	0.00	0.00	0.00	0.00	1.00
Compulsive Spending Share in Online Payment $_{i,t}$	843,993	0.01	0.10	0.00	0.00	0.00	0.00	1.00

Alipay and Dockless Bike-Sharing Service

- Fast growing bike-sharing industry
- Alipay-bundled shared bikes
 - Investment \geq 3.5 billion dollars
 - Strategic partnership
 - Unlock bike directly with Alipay

Source: IPO Prospectus of Hello Inc, 2021; iResearch Report

Alipay Registration and Shared-Bike Adoption

Bike-Related Personal Characteristics

		Bike User;	
	(1)	(2)	(3)
Low Education _i	-0.173***	-0.109***	-0.065***
	(0.009)	(0.010)	(0.009)
Older than Median _i	-0.095***	-0.110***	-0.096***
	(0.005)	(0.005)	(0.004)
Early Alipay User _i	-0.129***	-0.113***	-0.030***
	(0.007)	(0.006)	(0.005)
Malei	0.049***	0.059***	0.045***
	(0.004)	(0.004)	(0.004)
Pay with Real Name _i	0.088***	0.081***	0.012**
	(0.006)	(0.005)	(0.005)
Use Own Account _i	0.076***	0.071***	0.033***
	(0.006)	(0.005)	(0.005)
Complete Profile;	0.012*	0.001	-0.012*
	(0.007)	(0.006)	(0.006)
Constant	0.421***		
	(0.013)		
City FE	NO	YES	YES
Occupation FE	NO	YES	YES
Controls Financial Activity Measures	NO	NO	YES
Clustered by City	YES	YES	YES
Observations	39,459	39,459	39,459
Adjusted R ²	0.123	0.178	0.260
Note:	*p < 0.1; *	** <i>p</i> < 0.05; *	***p < 0.01

Bike Usage, Personal Characteristics, and Exclusion Restriction

			Dependent	Variable		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Ordinary Le	east Squares with I	Dependent Variable: <i>Ic</i>	$\log(1 + In\operatorname{-}Person\ Pay)$	ment Flow);	,t	
$log(Bike Placement)_{c,t}$	-0.022	0.008	0.029**	0.021**	-0.013	-0.010
	(0.014)	(0.010)	(0.011)	(0.009)	(0.015)	(0.010)
Bike User _i \times log(Bike Placement) _{c,t}	0.139***	0.110***	0.092***	0.099***	0.057**	0.139***
	(0.029)	(0.018)	(0.017)	(0.021)	(0.025)	(0.029)
Characteristic Measure _i \times log(Bike Placement) _{c,t}	0.036**	0.004	-0.038***	-0.023**	0.033*	0.036**
	(0.017)	(0.013)	(0.012)	(0.008)	(0.019)	(0.017)
Bike User _i × Characteristic Measure _i × $log(Bike Placement)_{c,t}$	-0.040	-0.017	0.009	0.009	0.046**	-0.045
	(0.031)	(0.018)	(0.025)	(0.020)	(0.023)	(0.031)
Adjusted R ²	0.552	0.552	0.552	0.552	0.552	0.552
Panel B. Ordi	nary Least Squares	with Dependent Varia	able: $log(1 + Credit)$	Line) _{i,t}		
log(Bike Placement) _{c,t}	0.009	0.014	0.020	0.004	-0.008	0.003
	(0.021)	(0.010)	(0.013)	(0.014)	(0.013)	(0.015)
Bike User _i \times log(Bike Placement) _{c,t}	0.051*	0.053*	0.057*	0.056**	0.049*	0.042**
	(0.030)	(0.026)	(0.029)	(0.025)	(0.029)	(0.020)
Characteristic Measure _i $\times log(Bike Placement)_{c,t}$	0.0001	-0.011	-0.023	0.008	0.024*	0.012
	(0.026)	(0.018)	(0.025)	(0.012)	(0.014)	(0.014)
Bike User _i × Characteristic Measure _i × $log(Bike Placement)_{c,t}$	0.012	0.016	-0.008	0.007	0.007	0.022
	(0.025)	(0.028)	(0.046)	(0.019)	(0.037)	(0.034)
Adjusted R ²	0.800	0.799	0.800	0.799	0.800	0.800
Personal Characteristic Measure	Low Education;	Older than Median;	Early Alipay User,	Malei	Pay with Real Name;	Use Own Account _i
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Observations	1,237,707	1,237,707	1,237,707	1,237,707	1,237,707	1,237,707

Note:

Background of Bike Sharing Service

Low Cost of Usage

- 0.23 USD/first 15 min
- After the first 15min, 0.08 USD/15min
- Unlimited plan: About 3 USD/month

Large User Base

- The size of the user base of shared bikes in China is 260 million as of late 2019
- Over 400 million Hellobike users in 2021

Direct Effects of Bike Usage

	$log(1 + \ln l)$	$log(1 + In-Person Payment Flow)_{i,t}$		edit Line) _{i,t}
	(1)	(2)	(3)	(4)
$log(Bike Placement)_{c,t}$	0.011		0.009	
	(0.009)		(0.010)	
One-Time Bike User _i \times log(Bike Placement) _{c,t}	0.088***	0.072***	0.048**	0.035
	(0.020)	(0.019)	(0.023)	(0.025)
Repeat Bike User $_i imes log(Bike Placement)_{c,t}$	0.106***	0.078***	0.062**	0.040
	(0.018)	(0.017)	(0.025)	(0.029)
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	-	YES	-
$City imesYear ext{-Month}FE$	NO	YES	NO	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Observations	1,238,309	1,238,309	1,238,309	1,238,309
Adjusted <i>R</i> ²	0.552	0.555	0.800	0.801

Note:

Bike Placement and Local Economy

	$log(GDP)_{c,t}$ (1)	$log(GDP per capita)_{c,t}$ (2)	Fiscal Spending/GDP _{c,t} (3)	Fiscal Income/GDP _{c,t} (4)
$log(Bike Placement)_{c,t}$	0.002 (0.002)	0.000 (0.002)	-0.001 (0.001)	0.000 (0.000)
City FE Year FE Clustered by City and Year	YES YES	YES YES	YES YES	YES YES
Observations Adjusted R^2	895 0.992	775 0.979	886 0.957	891 0.903
• ·				

Note:

Staggered Placement of Shared Bikes

Broad Distribution of Bike-Placement Shock

Why IV Estimate \gg OLS Estimate

- Reason 1: Omitted variables
 - o OLS can have a downward bias due to omitted variables
 - Example: A negative health shock

Explanation with an Econometric Framework

- Reason 2: Non-monotone payment-credit relationship
 - $\circ~$ Below a threshold, payment flow \rightarrow information \rightarrow credit provision
 - $\circ~$ Above a threshold, payment flow \rightarrow over-spending \rightarrow risky \rightarrow less credit provision

Evidence of Non-Monotone Payment-Credit Relationship

OLS and IV Estimates

- An econometric framework with endogeneity Econometric Framework Setup
- OLS Estimate
 - $\circ~$ Assume 0 $<\alpha_1<$ 1, 0 $<\beta_1<$ 1, and $\varepsilon_{i,t}^{\textit{EE}}\perp\varphi_{i,t}$, then

$$\hat{\alpha}_{1}^{OLS} = \frac{Cov(cl_{i,t}, ipf_{i,t})}{Var(ipf_{i,t})} \\ = \alpha_{1} + \underbrace{\frac{1}{1 - \alpha_{1} \cdot \beta_{1}}}_{+} \cdot \underbrace{[\frac{Var(\delta_{i} + \theta_{t} + \varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE})}{Var(ipf_{i,t})} \cdot \beta_{1}}_{+} + \underbrace{\frac{Cov(\varepsilon_{i,t}^{OV}, \varphi_{i,t})}{Var(ipf_{i,t})}}_{+ \text{ or } -}]$$

• IV Estimate

• Given
$$Cov(ipf_{i,t}, bp_{c,t}) = \frac{1}{1-\alpha_1 \cdot \beta_1} \cdot Cov(\varphi_{i,t}, bp_{c,t}) \neq 0$$

$$\hat{\alpha}_1^{IV} = \frac{Cov(cl_{i,t}, bp_{c,t})}{Cov(ipf_{i,t}, bp_{c,t})} = \alpha_1$$

Econometric Framework Setup

• Three Parties: Lender, Borrower i, Bike-Sharing Company

- Credit Supply: $cl_{i,t} = \alpha_0 + \alpha_1 \cdot ipf_{i,t} + \delta_i + \theta_t + \varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE}$
- In-Person Payment Decision: $ipf_{i,t} = \beta_0 + \beta_1 \cdot cl_{i,t} + \mu_i + \omega_t + \varphi_{i,t}$
- Exogenous Bike Placement Decision: $bp_{c,t}$

Identifying Assumptions

- Both $\varepsilon_{i,t} = \varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE}$ and $\varphi_{i,t}$ are orthogonal to 1, δ_i , θ_t , μ_i , ω_t
- $bp_{c,t}$ is a valid instrument for $ipf_{i,t}$:

-
$$\mathsf{E}[(\varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE}) \cdot bp_{c,t}] = 0$$

-
$$\mathsf{E}[\varphi_{i,t} \cdot bp_{c,t}] \neq 0$$

Non-Monotone Payment-Credit Relationship

Non-Monotone Payment-Credit Relationship: Regression

		Normalized	Cradit Lina.	
	(1)	(2)	(3)	(4)
Normalized In-Person Payment Flow	0.214***	0.581***	0.040***	0.105***
	(0.033)	(0.076)	(0.006)	(0.013)
(Normalized In-Person Payment $Flow_{i,t}$) ²	· · ·	-0.448* ^{**}	()	-0.075**
		(0.064)		(0.009)
Constant	0.436***	0.422***		
	(0.042)	(0.043)		
Individual FE	NO	NO	YES	YES
Year-Month FE	NO	NO	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Observations	1,030,678	1,030,678	1,030,678	1,030,678
Adjusted R ²	0.016	0.022	0.767	0.767
Note:		*p < 0.1; *	*p < 0.05; *	**p < 0.0

Control for City \times Year-Month Fixed Effects

	Credit A	Access _{i,t}	<i>log</i> (Cred	it Line) _{i,t}
	(1)	(2)	(3)	(4)
Panel A.	Two-Stage Le	ast Squares		
$log(1 + In$ -Person Payment Flow) $_{i,t}$	0.115***	0.108***	0.398***	0.418***
	(0.004)	(0.004)	(0.016)	(0.019)
Panel B. First Stage f	or $log(1 + {\sf In-f})$	Person Paymer	t Flow) _{i,t}	
Bike User _i \times log(Bike Placement) _{c,t}	0.209***	0.178***	0.166***	0.134***
	(0.008)	(0.008)	(0.007)	(0.007)
F-Statistic	772.9	476.0	503.2	343.0
Adjusted R ²	0.168	0.190	0.147	0.173
Panel C	. Ordinary Lea	st Squares		
$log(1 + In-Person Payment Flow)_{i,t}$	0.054***	0.047***	0.147***	0.121***
	(0.001)	(0.001)	(0.004)	(0.004)
Adjusted R ²	0.193	0.245	0.181	0.363
City \times Year-Month FE	YES	YES	YES	YES
Controls Individual Characteristics	NO	YES	NO	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Observations	1,238,309	664,727	779,283	440,418
N1 - 1		* . 0.1	**	*** . 0.01

In-Person Payment Flow and Future Credit Provision

	(Credit Access _{i,}	т	log(Credit Line) _{i,T}		
	t+1	t+2	t + 3	t+1	t+2	t+3
	(1)	(2)	(3)	(4)	(5)	(6)
	Panel A.	Two-Stage Le	ast Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.088***	0.085***	0.083***	0.250***	0.242***	0.235***
	(0.023)	(0.024)	(0.024)	(0.071)	(0.069)	(0.064)
Panel B	. First Stage f	or $log(1+{\sf In-F})$	Person Paymen	t Flow) _{i,t}		
$log(Bike Placement)_{c,t}$	0.041***	0.042***	0.042***	0.048***	0.048***	0.049***
	(0.011)	(0.011)	(0.011)	(0.012)	(0.013)	(0.013)
F-Statistic	15.4	15.1	15.4	15.0	14.6	15.0
Adjusted R ²	0.552	0.553	0.554	0.523	0.522	0.521
	Panel C	Ordinary Lea	st Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.008***	0.007***	0.006***	0.025***	0.026***	0.027***
	(0.001)	(0.001)	(0.001)	(0.003)	(0.003)	(0.003)
Adjusted R^2	0.743	0.750	0.757	0.837	0.839	0.841
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credit
Observations	1,199,746	1,161,435	1,123,295	775,512	763,560	750,694
N/-+				* 0.1	**	*** - 0.01

Control for Past In-Person Payment Flow

				log(Credit Line); t		
	(1)	(2)	(3)	(4)	(5)	(6)
F	Panel A. Two-S	Stage Least Sq	uares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.139***	0.154***	0.157***	0.388***	0.457***	0.531**
	(0.038)	(0.048)	(0.056)	(0.129)	(0.167)	(0.204)
Panel B. First	Stage for <i>log</i>	(1 + In-Person)	Payment Flow	v) _{i,t}		
<i>log</i> (Bike Placement) _{c,t}	0.024***	0.019***	0.016***	0.027***	0.022***	0.018***
	(0.006)	(0.005)	(0.005)	(0.007)	(0.006)	(0.005)
F-Statistic	16.7	14.0	11.0	16.4	14.5	12.3
Adjusted R ²	0.636	0.647	0.651	0.596	0.605	0.608
	Panel C. Ordi	nary Least Squ	iares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.007***	0.006***	0.006***	0.015***	0.012***	0.010***
	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)
Adjusted R ²	0.743	0.751	0.759	0.837	0.840	0.842
Controls $log(1 + In-Person Payment Flow)_{i,t-1}$	YES	YES	YES	YES	YES	YES
Controls $log(1 + In-Person Payment Flow)_{i,t-2}$	NO	YES	YES	NO	YES	YES
Controls $log(1 + In$ -Person Payment Flow) _{<i>i</i>,t-3}	NO	NO	YES	NO	NO	YES
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credit
Observations	1,199,825	1,161,573	1,123,548	775,601	763,711	750,940

Go Back

Control for Bike Usage

	Credit	Access _{i,t}	log(Credit Line) _{i,t}		
	(1)	(2)	(3)	(4)	
Pa	nel A. Two-Sta	ge Least Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.098***	0.097***	0.329***	0.329***	
	(0.030)	(0.030)	(0.112)	(0.112)	
$log(1 + Measure of Bike Usage)_{i,t}$	-0.034**	-0.028**	-0.112**	-0.094**	
	(0.015)	(0.012)	(0.048)	(0.041)	
Panel B. First	Stage for log(1	+ In-Person Payme	ent Flow) _{i,t}		
$log(Bike Placement)_{c,t}$	0.034***	0.034***	0.036***	0.036***	
	(0.010)	(0.010)	(0.011)	(0.011)	
$log(1 + Measure of Bike Usage)_{i,t}$	0.497***	0.391***	0.408***	0.324***	
	(0.022)	(0.030)	(0.021)	(0.027)	
F-Statistic	11.2	11.2	10.2	10.2	
Adjusted R ²	0.554	0.554	0.530	0.529	
F	anel C. Ordinar	y Least Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.010***	0.010***	0.021***	0.022***	
	(0.001)	(0.001)	(0.003)	(0.003)	
$log(1 + Measure of Bike Usage)_{i,t}$	0.010***	0.007***	0.015***	0.007*	
	(0.002)	(0.001)	(0.005)	(0.004)	
Adjusted R ²	0.740	0.740	0.836	0.836	
Measure of Bike Usage	# Bike Rides	Riding Distance	# Bike Rides	Riding Distance	
Individual FE	YES	YES	YES	YES	
Year-Month FE	YES	YES	YES	YES	
Clustered by City and Year-Month	YES	YES	YES	YES	
Sample	Full Sample	Full Sample	Has Credit	Has Credit	
Observations	1,238,309	1,238,309	779,283	779,283	

Control for Online Payments

	Credit	Access _{i,t}	log(Credit Line) _{i,t}					
	(1)	(2)	(3)	(4)				
Panel A. Two-Stage Least Squares								
$log(1 + In-Person Payment Flow)_{i,t}$	0.086***	0.085***	0.280***	0.277***				
	(0.023)	(0.023)	(0.085)	(0.082)				
$log(1 + Measure of Online Payment)_{i,t}$	-0.009	-0.028	-0.037*	-0.107*				
	(0.006)	(0.017)	(0.021)	(0.054)				
P	anel B. First Stage for <i>l</i>	$og(1 + {\sf In-Person} \ {\sf Paymen})$	t Flow) _{i,t}					
$log(Bike Placement)_{c,t}$	0.041***	0.042***	0.043***	0.044***				
	(0.010)	(0.010)	(0.012)	(0.012)				
$log(1 + Measure of Online Payment)_{i,t}$	0.260***	0.716***	0.246***	0.649***				
	(0.007)	(0.015)	(0.008)	(0.018)				
F-Statistic	16.0	16.2	14.0	14.3				
Adjusted R ²	0.572	0.574	0.544	0.545				
	Panel C. Or	dinary Least Squares						
$log(1 + In-Person Payment Flow)_{i,t}$	0.008***	0.008***	0.018***	0.018***				
	(0.001)	(0.001)	(0.002)	(0.002)				
$log(1 + Measure of Online Payment)_{i,t}$	0.011***	0.027***	0.027***	0.061***				
	(0.001)	(0.002)	(0.003)	(0.007)				
Adjusted R ²	0.742	0.742	0.837	0.836				
Measure of Online Payment	Online Payment Flow	# Online Transactions	Online Payment Flow	# Online Transactions				
Individual FE	YES	YES	YES	YES				
Year-Month FE	YES	YES	YES	YES				
Clustered by City and Year-Month	YES	YES	YES	YES				
Sample	Full Sample	Full Sample	Has Credit	Has Credit				
Observations	1,238,309	1,238,309	779,283	779,283				

Credit Access and Payment Changes

 $log(1 + \text{Total Payment Flow})_{i,t} = \alpha_0 + \sum_{\tau = -5}^{+} \beta_{\tau} \cdot \mathbb{1}(t = \tau) \cdot \mathbb{1}(\tau \neq -1) + \beta_5 \cdot \mathbb{1}(t \geq 5) + \delta_i + \mu_t + \varepsilon_{i,t}$

Setup of the Illustrative Example

- There are a monopolistic lender and a continuum of borrowers
- Type of borrower *i*: $\theta_i \sim U[0, 1]$
- Lender's expected profit of lending I_i to borrower *i*, given θ_i

$$\pi_i(heta_i, l_i) = egin{cases} heta_i + 2 \cdot heta_i \cdot l_i - l_i^2 - 1 &, ext{ if } l_i > 0 \ 0 &, ext{ if } l_i = 0 \end{cases}$$

- Properties of the expected profit function
 - Fix credit line I_i , $\pi_i(\theta_i, I_i)$ increases with borrower type θ_i
 - Fix θ_i , \exists optimal credit line $I^*(\theta_i)$ that maximizes $\pi_i(\theta_i, I_i)$
 - If optimal credit line $I^*(\theta_i)$ is non-zero, $I^*(\theta_i)$ increases with θ_i
- When the lender only knows the type distribution of a group, it will lend the same to everyone if expected profit is positive

Age and Payment-Credit Relationship

	Credit	Access _{i,t}	log(Cre	dit Line) _{i,t}			
	(1)	(2)	(3)	(4)			
	Panel A. Tw	<i>v</i> o-Stage Least Squares					
$log(1 + In-Person Payment Flow)_{i,t}$	0.124***	0.047**	0.440***	0.176**			
	(0.041)	(0.020)	(0.177)	(0.065)			
Panel B. First Stage for $log(1 + {\sf In}{\sf -Person}$ Payment ${\sf Flow})_{i,t}$							
$log(Bike Placement)_{c,t}$	0.032***	0.049***	0.030***	0.054***			
	(0.010)	(0.012)	(0.011)	(0.013)			
F-Statistic	9.7	17.8	7.0	16.6			
Adjusted R ²	0.552	0.539	0.559	0.483			
Individual FE	YES	YES	YES	YES			
Year-Month FE	YES	YES	YES	YES			
Clustered by City and Year-Month	YES	YES	YES	YES			
Sample	Full Sample	Full Sample	Has Credit	Has Credit			
Subsample	Older than Median	Younger than Median	Older than Median	Younger than Median			
Observations	577,711	654,823	335,670	443,402			

Note:

Random Income Flow

• Income flow of borrow *i* in period t = 1, 2 is determined by:

$$e_{it} = X_i\beta + y_i + \epsilon_{it}$$

where

- X_i is a vector of observant characteristics of borrower i
- y_i is an unobservant type of borrower i
 - We assume $y_i \in \mathcal{N}(0, \sigma_y^2)$
 - The density function is $g(y) = rac{1}{\sigma_y \sqrt{2\pi}} e^{-y^2/2\sigma_y^2}$
- ϵ_{it} is an unobservant shock to borrower *i* in period *t*
 - We assume idiosyncratic shock $\epsilon_{it} \in \mathcal{N}(0, \sigma_{\epsilon}^2)$ and $\epsilon_{it} \perp y_i$
 - The density function is $f(\epsilon) = rac{1}{\sigma_\epsilon \sqrt{2\pi}} e^{-\epsilon^2/2\sigma_\epsilon^2}$

Lender's Problem

- In period t = 1, the lender decides to offer a credit line of l_i to borrower i, and charges a unit fee of R for used credit b_i . In the digital payment era, we assume all the consumption are paid with digital money, and the lender observes borrower i's consumption c_i
- In period t = 2, the lender suffers a loss of the credit line amount l_i if the borrower *i* defaults
- The lender choose optimal credit line l_i to maximize its profit

$$\max_{l_i} R \cdot b_i - \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A] \cdot l_i$$

where $\mathbb{1}_i^D$ is a dummy variable indicating whether borrower *i* defaults in period t = 2

Borrower *i*'s **Problem**

- In period t = 1, the borrower *i* receives the random income flow e_{i1} , knows about the credit line available to her l_i , decides the amount of credit she would like to use b_i , and make the consumption c_i
 - We assume the borrower is hand to mouth in period t = 1, and the consumption is $c_i = e_{i1} + (1 R) \cdot b_i$
- In period t = 2, borrower *i* receives the random income flow e_{i2} , and tries to pay off the credit balance b_i with the income and an external iliquid asset *A*. If the balance cannot be paid off, borrower *i* defaults and suffers a default cost *D*
- Borrower *i* is risk-neutral and discounts future cash flows, she chooses optimal used credit *b_i* to maximize the utility

$$\max_{b_i} c_i - \rho \cdot \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A] \cdot D - \rho \cdot (1 - \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A]) \cdot b_i$$

such that

$$0 \leq b_i \leq l_i$$

First Order Conditions

• FOC of the lender's problem

$$R \cdot \frac{\partial b_i}{\partial l_i} - \Phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) - \phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) \cdot \frac{l_i}{\sqrt{2}\sigma_{\epsilon}} \cdot \frac{\partial b_i}{\partial l_i} = 0$$

• FOC of the borrower *i*'s problem

$$(1-R) - \phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) \cdot \frac{\rho \cdot (D - b_i)}{\sqrt{2}\sigma_{\epsilon}} - \rho \cdot [1 - \Phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}})] = 0$$

Go Back

Estimation Steps and Identification

- Calibrate credit usage fee R=0.03 and discounting parameter ho=0.9
- Assume borrower *i* has fully shifted from cash to digital money for consumption when her credit line stops increasing
 - Assume borrowers are hand-to-mouth in these months, thus $c_i = e_{i1} + (1-R) \cdot b_i$
 - The observed consumption c_i and used credit b_i imply monthly income e_{i1}
 - Monthly income is determined by $e_{i1} = X_i \beta + y_i + \epsilon_{i1}$
 - The variations in monthly income help us to estimate σ_ϵ
 - Use the average monthly values as the observed c_i , b_i and e_{i1} respectively
- Estimate the parameters β and σ_y with a cross-sectional regression
 - Run the OLS regression: $e_{i1} = X_i\beta + y_i + \epsilon_{i1}$
 - Let observables X_i include gender, education, age, and city
- Estimate external funding A by using lender's FOC as the moment condition
 - Assume lender uses heuristics to predict used credit: $b_i = \lambda \cdot l_i$
- Estimate default cost D by using borrower's FOC as the moment condition

Expectation of Default

• When lender knows borrower *i*'s consumption *c_i* (Digital Money User) Derivation

$$\begin{split} \mathsf{E}[\mathbb{1}_{i}^{D}|X_{i},b_{i},\boldsymbol{c_{i}};\beta,R,A] &= \Phi(\frac{b_{i}-A-e_{i1}}{\sqrt{2}\sigma_{\epsilon}})\\ &= \mathsf{E}[\mathbb{1}(X_{i}\beta+y_{i}+\epsilon_{i1}-\epsilon_{i1}+\epsilon_{i2}+A-b_{i}<0)|X_{i},b_{i},c_{i};\beta,R,A]\\ &= \int_{-\infty}^{+\infty}\mathbb{1}(\epsilon_{i2}-\epsilon_{i1}< b_{i}-A-e_{i1}|b_{i},e_{i1})f(\epsilon_{i1})f(\epsilon_{i2})d\epsilon_{i1}d\epsilon_{i2} \end{split}$$

• When lender doesn't know consumption c_i (New Digital Money Adopter) Derivation

$$E[\mathbb{1}_{i}^{D}|X_{i}, b_{i}; \beta, R, A] = \Phi(\frac{b_{i} - A - X_{i}\beta}{\sqrt{\sigma_{\epsilon}^{2} + \sigma_{y}^{2}}})$$
$$= E[\mathbb{1}(X_{i}\beta + y_{i} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}; \beta, R, A]$$
$$= \int_{-\infty}^{+\infty} \mathbb{1}(y_{i} + \epsilon_{i2} < b_{i} - A - X_{i}\beta|X_{i}, b_{i}; \beta)g(y)f(\epsilon_{i2})dyd\epsilon_{i2}$$

Expectation of Borrower *i*'s Default

• When the agent knows borrower *i*'s consumption *c_i*

$$\begin{split} & \mathsf{E}[\mathbb{1}_{i}^{D}|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(e_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(X_{i}\beta + y_{i} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(X_{i}\beta + y_{i} + \epsilon_{i1} - \epsilon_{i1} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(e_{i1} - \epsilon_{i1} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A] \\ &= \mathsf{E}[\mathbb{1}(\epsilon_{i2} - \epsilon_{i1} < b_{i} - A - e_{i1})|b_{i}, e_{i1}] \\ &= \int_{-\infty}^{+\infty} \mathbb{1}(\epsilon_{i2} - \epsilon_{i1} < b_{i} - A - e_{i1}|b_{i}, e_{i1})f(\epsilon_{i1})f(\epsilon_{i2})d\epsilon_{i1}d\epsilon_{i2} \\ &= \Phi(\frac{b_{i} - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) \end{split}$$

Expectation of Borrower *i*'s Default

- When the agent doesn't know borrower *i*'s consumption *c_i*
 - $\circ\,$ E.g. when the borrower makes consumption with cash instead of digital money, the lender does not know this information

$$\begin{split} \mathsf{E}[\mathbb{1}_{i}^{D}|X_{i},b_{i};\beta,R,A] \\ &= \mathsf{E}[\mathbb{1}(e_{i2}+A-b_{i}<0)|X_{i},b_{i};\beta,R,A] \\ &= \mathsf{E}[\mathbb{1}(X_{i}\beta+y_{i}+\epsilon_{i2}+A-b_{i}<0)|X_{i},b_{i};\beta,R,A] \\ &= \mathsf{E}[\mathbb{1}(y_{i}+\epsilon_{i2}< b_{i}-A-X_{i}\beta)|X_{i},b_{i};\beta] \\ &= \int_{-\infty}^{+\infty} \mathbb{1}(y_{i}+\epsilon_{i2}< b_{i}-A-X_{i}\beta|X_{i},b_{i};\beta)g(y)f(\epsilon_{i2})dyd\epsilon_{i2} \\ &= \Phi(\frac{b_{i}-A-X_{i}\beta}{\sqrt{\sigma_{\epsilon}^{2}+\sigma_{y}^{2}}}) \end{split}$$

Estimation Specifications

- Data cleaning
 - $\,\circ\,$ Consumption and used credit are winsorized at 5% and 95%
 - The months with zero consumption are dropped
- OLS regression specification

$$e_{i1} = \beta_0 + \beta_{male} \cdot \mathbb{1}_i^{male} + \sum_{edu \in U} \beta_{edu} \cdot \mathbb{1}_i^{edu} + \sum_{k \in K} \beta_k \cdot \mathbb{1}_i^{k-5 < age \le k} + \sum_{city \in C} \beta_{city} \cdot \mathbb{1}_i^{city} + u_i$$

where $U = \{\text{Below College, Undergraduate, Graduate}\},\$ $K = \{1930, 1935, ..., 2010\}, C$ include 340 unique cities in China, and error term $u_i = y_i + \epsilon_{i1}$, thus $u_i \in \mathcal{N}(0, \sigma_y^2 + \sigma_\epsilon^2)$

Distribution of Observed Variables

	Ν	Mean	Std	Min	p25	Median	p75	Max
Ci	38,276	1,595.1	2,049.9	0.0	134.4	715.5	2,210.5	7,606.7
bi	38,276	487.7	732.9	0.0	0.0	56.3	731.0	2,377.8
e_{i1}	38,276	1,122.0	1,665.8	0.0	48.8	344.2	1,431.9	7,606.7
li	38,276	7,145.5	10,256.8	0.0	0.0	3,000.0	10,000.0	61,000.0

Distributional Effects

• The payment information leads to better financial inclusion

	Δlog (Credit Line _i), %	$\Delta log(Consumer Welfare_i), \%$	$\Delta log(Lender Profit_i), \%$	$\Delta log(Annualized Default Rate_i), \%$
	(1)	(2)	(3)	(4)
Low Education _i	1.558**	0.036***	0.708***	0.007**
	(0.786)	(0.011)	(0.222)	(0.003)
Older than $Median_i$	1.164**	0.027***	0.392***	-0.001
	(0.530)	(0.007)	(0.150)	(0.002)
Male _i	1.326***	0.009	0.128	-0.0003
	(0.493)	(0.007)	(0.139)	(0.002)
City FE	YES	YES	YES	YES
Observations	38,008	38,008	38,008	38,008
R^2	0.031	0.006	0.009	0.007

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

