Cashless Payment and Financial Inclusion

Shumiao Ouyang

Saïd Business School, University of Oxford

TSE Finance Seminar
March 2024

Background

- The financial inclusion challenge
- Extending credit access to the underprivileged
- The issue has received wide attention but faces a number of challenges

Background

- The financial inclusion challenge
- Extending credit access to the underprivileged
- The issue has received wide attention but faces a number of challenges
- BigTech credit is booming globally, potentially addressing the inclusion challenge
- BigTech firms usually provide both payment and credit services
- Mobile cashless payment has accelerated the shift from cash to cashless society

Background

- The financial inclusion challenge
- Extending credit access to the underprivileged
- The issue has received wide attention but faces a number of challenges
- BigTech credit is booming globally, potentially addressing the inclusion challenge
- BigTech firms usually provide both payment and credit services
- Mobile cashless payment has accelerated the shift from cash to cashless society

Research Questions

Is information from payment flows a causal factor behind BigTech credit expansion?
Does the expansion benefit the underprivileged consumers?

Causal Link between Cashless Payment and Credit Provision

Causal Link between Cashless Payment and Credit Provision

- Requires an exogenous shock to the cashless payment activity

Causal Link between Cashless Payment and Credit Provision

- Requires an exogenous shock to the cashless payment activity
- Requires detailed individual-level data on payment, credit, and so on

Causal Link between Cashless Payment and Credit Provision

- Requires an exogenous shock to the cashless payment activity
- Requires detailed individual-level data on payment, credit, and so on
- A natural experiment + rich administrative data from Alipay

The Main Findings

- Cashless payment flow facilitates credit provision and take-up
- Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow 56.3 \%$
- In-person payment amount $\uparrow 1 \% \rightarrow$ credit line $\uparrow 0.41 \%$
- More credit usage for both in-person and online purchases
- Cashless payment flow facilitates credit provision and take-up
- Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow 56.3 \%$
- In-person payment amount $\uparrow 1 \% \rightarrow$ credit line $\uparrow 0.41 \%$
- More credit usage for both in-person and online purchases
- BigTech takes advantage of information in the payment flow
- Beyond what is in credit usage, repayment, and assets under management (AUM)

The Main Findings

- Cashless payment flow facilitates credit provision and take-up
- Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow 56.3 \%$
- In-person payment amount $\uparrow 1 \% \rightarrow$ credit line $\uparrow 0.41 \%$
- More credit usage for both in-person and online purchases
- BigTech takes advantage of information in the payment flow
- Beyond what is in credit usage, repayment, and assets under management (AUM)
- I build and estimate a simple model to quantify the value of payment data

The Main Findings

- Cashless payment flow facilitates credit provision and take-up
- Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow 56.3 \%$
- In-person payment amount $\uparrow 1 \% \rightarrow$ credit line $\uparrow 0.41 \%$
- More credit usage for both in-person and online purchases
- BigTech takes advantage of information in the payment flow
- Beyond what is in credit usage, repayment, and assets under management (AUM)
- I build and estimate a simple model to quantify the value of payment data
- The above effects are present mostly among the financially underserved
- Stronger credit provision effects on the less educated and older

Two Closely Related Papers

Two Closely Related Papers

- Parlour, Rajan, and Zhu (2022)
- A model of competition between financial intermediations for payment processing
- Key premise: payment flow data contain information on consumers' credit quality

Two Closely Related Papers

- Parlour, Rajan, and Zhu (2022)
- A model of competition between financial intermediations for payment processing
- Key premise: payment flow data contain information on consumers' credit quality
- My paper: Provides direct evidence supporting the premise

Two Closely Related Papers

- Parlour, Rajan, and Zhu (2022)
- A model of competition between financial intermediations for payment processing
- Key premise: payment flow data contain information on consumers' credit quality
- My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
- Uncovers the synergy between FinTech small-business lending and cashless payment

Two Closely Related Papers

- Parlour, Rajan, and Zhu (2022)
- A model of competition between financial intermediations for payment processing
- Key premise: payment flow data contain information on consumers' credit quality
- My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
- Uncovers the synergy between FinTech small-business lending and cashless payment
- My paper: Shows causal effect of cashless payment on consumer credit provision

Two Closely Related Papers

- Parlour, Rajan, and Zhu (2022)
- A model of competition between financial intermediations for payment processing
- Key premise: payment flow data contain information on consumers' credit quality
- My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
- Uncovers the synergy between FinTech small-business lending and cashless payment
- My paper: Shows causal effect of cashless payment on consumer credit provision
- Better firms benefit more from cashless payment adoption

Two Closely Related Papers

- Parlour, Rajan, and Zhu (2022)
- A model of competition between financial intermediations for payment processing
- Key premise: payment flow data contain information on consumers' credit quality
- My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
- Uncovers the synergy between FinTech small-business lending and cashless payment
- My paper: Shows causal effect of cashless payment on consumer credit provision
- Better firms benefit more from cashless payment adoption
- My paper: The underprivileged get more credit access after payment adoption

Two Closely Related Papers

- Parlour, Rajan, and Zhu (2022)
- A model of competition between financial intermediations for payment processing
- Key premise: payment flow data contain information on consumers' credit quality
- My paper: Provides direct evidence supporting the premise
- Ghosh, Vallee, and Zeng (2022)
- Uncovers the synergy between FinTech small-business lending and cashless payment
- My paper: Shows causal effect of cashless payment on consumer credit provision
- Better firms benefit more from cashless payment adoption
- My paper: The underprivileged get more credit access after payment adoption
- See the paper for a more comprehensive list of references

Data and Identification

Observation 1: Rise of Cashless Payments

Source: US Federal Reserve, PBOC, World Bank

Observation 2: Rise of BigTech Credit

- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features

Observation 2: Rise of BigTech Credit

- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
- 72% have access to Huabei credit line

Observation 2: Rise of BigTech Credit

- Alipay: the largest mobile wallet with more than 1 billion users
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
- 72% have access to Huabei credit line
- Among those with Huabei access
- 95% have used the credit, with an average monthly usage of 533 CNY (~ 80 USD)

Observation 2: Rise of BigTech Credit

- Alipay: the largest mobile wallet with more than 1 billion users
- Huabei credit line: the largest consumer finance product Huabei's Product Features
- In a representative sample of Alipay users
- 72% have access to Huabei credit line
- Among those with Huabei access
- 95% have used the credit, with an average monthly usage of 533 CNY (~ 80 USD)
- Even among those who do not have a credit card on file
- 64% have access to Huabei credit line

Data

- Representative Random Sample from Population
- 41, 485 Alipay users with in-person cashless payment activities
- Individual-level monthly panel data with detailed information
- Personal characteristics
- Payment, credit, investment, and other digital footprints

Data

- Representative Random Sample from Population
- 41, 485 Alipay users with in-person cashless payment activities
- Individual-level monthly panel data with detailed information
- Personal characteristics
- Payment, credit, investment, and other digital footprints
- Sample Period
- From May 2017 to September 2020
- Both mobile payment and bike-sharing industries develop fast

My Solution for the Identification Challenge

The Nudge: Bike Adoption and Non-Bike Payment Flow

$$
\log (1+\ln \text {-Person Non-Bike Payment Flow })_{i, t}=\alpha_{0}+\sum_{\tau=-5}^{4} \beta_{\tau} \cdot \mathbb{1}(t=\tau)+\beta_{5} \cdot \mathbb{1}(t \geq 5)+\delta_{i}+\mu_{t}+\varepsilon_{i, t}
$$

The Relevance Condition

	$\log (1+\operatorname{In} \text {-Person Payment Flow })_{i, t}$ (1) (2) (3)		
$\log (\text { Bike Placement })_{c, t}$	$\begin{gathered} 0.041^{* * *} \\ (0.010) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.009) \end{gathered}$	
Bike User ${ }_{i} \times \log (\text { Bike Placement })_{c, t}$		$\begin{gathered} 0.103^{* * *} \\ (0.017) \end{gathered}$	
After First Bike Usage ${ }_{i, t}$			$\begin{gathered} -0.123 \\ (0.161) \end{gathered}$
After First Bike Usage ${ }_{i, t} \times \log (\text { Bike Placement })_{c, t}$			$\begin{gathered} 0.049^{* * *} \\ (0.014) \end{gathered}$
Individual FE	YES	YES	YES
Year-Month FE	YES	YES	-
City \times Year-Month FE	NO	NO	YES
Clustered by City and Year-Month	YES	YES	YES
Sample	Full Sample	Full Sample	Bike Users
Observations	1,238,309	1,238,309	435,872
Adjusted R^{2}	0.551	0.552	0.490
Note:	*p<0.1	** $p<0.05$;	**p<0.01

The Exclusion Restriction

	$\log (1+\text { Credit Line })_{i, t}$		
	(1)	(2)	(3)
\log (Bike Placement) ${ }_{c, t}$	$\begin{gathered} \hline 0.027^{* * *} \\ (0.008) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.010) \end{gathered}$	
Bike User ${ }_{i} \times \log (\text { Bike Placement })_{c, t}$		$\begin{aligned} & 0.060^{* *} \\ & (0.023) \end{aligned}$	
After First Bike Usage ${ }_{i, t}$			$\begin{gathered} -0.231 \\ (0.157) \end{gathered}$
After First Bike Usage ${ }_{i, t} \times \log (\text { Bike Placement })_{c, t}$			$\begin{gathered} 0.070 * * * \\ (0.013) \end{gathered}$
Individual FE	YES	YES	YES
Year-Month FE	YES	YES	-
City \times Year-Month FE	NO	NO	YES
Clustered by City and Year-Month	YES	YES	YES
Sample	Full Sample	Full Sample	Bike Users
Observations	1,238,309	1,238,309	435,872
Adjusted R^{2}	0.800	0.800	0.774
Note:	${ }^{*} p<0.1$;	${ }^{* *} p<0.05$;	${ }^{* *} p<0.01$

IV Analysis

In-Person Payment Facilitates Credit Provision

Information Channel vs. Enforcement Channel

	Credit Access ${ }_{i, t}$ (1) (2)		$\log (\text { Credit Line })_{i, t}$ (3) (4)	
Panel A. Two-Stage Least Squares - Information Channel				
$\log \left(1+\ln\right.$-Person Noncredit Payment Flow) $i_{\text {i }}$,	$\begin{gathered} 0.094 * * * \\ (0.024) \end{gathered}$	$\begin{gathered} 0.095^{* * *} \\ (0.026) \end{gathered}$	$\begin{gathered} 0.329 * * * \\ (0.103) \end{gathered}$	$\begin{gathered} 0.358^{* * *} \\ (0.124) \end{gathered}$
$\log (1+\ln \text {-Person Credit Payment Flow })_{i, t}$		$\begin{gathered} -0.005 \\ (0.006) \end{gathered}$		$\begin{aligned} & -0.044 \\ & (0.029) \\ & \hline \end{aligned}$
Panel B. Two-Stage Least Squares - Enforcement Channel				
$\log (1+\mathrm{In} \text {-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.097^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} 0.098^{* * *} \\ (0.026) \end{gathered}$	$\begin{gathered} 0.280 * * * \\ (0.085) \end{gathered}$	$\begin{gathered} 0.282 * * * \\ (0.086) \end{gathered}$
$\log (1+\text { Assets under Management })_{i, t}$	$\begin{aligned} & -0.005 \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.005) \end{aligned}$	$\begin{gathered} -0.015 \\ (0.011) \end{gathered}$	$\begin{aligned} & -0.026^{*} \\ & (0.013) \end{aligned}$
Whether AUM Include Account Balance	NO	YES	NO	YES
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Observations	1,238,309	1,238,309	779,283	779,283
Note:		${ }^{*} p<0.1$;	* $p<0.05$;	${ }^{*} p<0.01$

In-Person Payment Increases Credit Take-Up

	Virtual Credit In-Person Payment (1)	ard Share ${ }_{i, t}$ Online Payment (2)	Compulsive Spe In-Person Payment (3)	ding Share $_{i, t}$ Online Payment (4)
Panel A. Two-Stage Least Squares				
$\log (1+\ln \text {-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.094^{* * *} \\ (0.034) \end{gathered}$	$\begin{gathered} 0.030^{* * *} \\ (0.011) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.002) \end{gathered}$
Panel B. First Stage for $\log (1+\ln \text {-Person Payment Flow })_{i, t}$				
$\log (\text { Bike Placement })_{c, t}$	$\begin{gathered} 0.028^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} 0.064^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} 0.028^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} 0.064^{* * *} \\ (0.014) \end{gathered}$
F-Statistic	11.0	22.7	11.0	22.7
Adjusted R^{2}	0.434	0.505	0.434	0.505
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Observations	662,010	806,938	662,010	806,938
Note:			${ }^{*} p<0.1 ;{ }^{* *} p<0$.05; ***p<0.01

More Precise Information, More Credit to the Less Creditworthy?

- . Cash User (Creditworthiness is Hidden)

More Precise Information, More Credit to the Less Creditworthy?

- . Cash User (Creditworthiness is Hidden)
- - New Digital Money Adopter (Knows if Creditworthiness ≥ 0.25)

More Precise Information, More Credit to the Less Creditworthy?

- - New Digital Money Adopter (Knows if Creditworthiness ≥ 0.25)
—Digital Money User (Knows Exact Creditworthiness)

More Precise Information, More Credit to the Less Creditworthy?

- . . Cash User (Creditworthiness is Hidden)
- - . New Digital Money Adopter (Knows if Creditworthiness ≥ 0.25)
——Digital Money User (Knows Exact Creditworthiness)
(a) Scenario of Financial Divide

More Precise Information, More Credit to the Less Creditworthy?

(a) Scenario of Financial Divide

. . . Cash User (Creditworthiness is Hidden)

- - - New Digital Money Adopter (Knows if Creditworthiness ≥ 0.8)
—Digital Money User (Knows Exact Creditworthiness)
(b) Scenario of Financial Inclusion

The Financially Underserved Segments

	Financial Service Usage			Financial Literacy		
	\# Debit Cards ${ }_{i}$ (1)	$\begin{equation*} \log (1+\text { Max. AUM })_{i} \tag{2} \end{equation*}$	\# Investment Months (3)	Pay with Real Name ${ }_{i}$ (4)	Use Own Account ${ }_{i}$ (5)	Complete Profile ${ }_{i}$ (6)
Low Education ${ }_{i}$	-0.694***	-1.078***	-3.076***	-0.119***	-0.087***	-0.122***
	(0.046)	(0.075)	(0.282)	(0.006)	(0.008)	(0.008)
Older than Median ${ }_{i}$	-0.863***	-0.671***	-2.512***	-0.191***	-0.223***	-0.089***
	(0.025)	(0.045)	(0.141)	(0.006)	(0.009)	(0.005)
Gender FE	YES	YES	YES	YES	YES	YES
City FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City	YES	YES	YES	YES	YES	YES
Observations	39,459	39,459	39,459	39,459	39,459	39,459
Adjusted R^{2}	0.081	0.052	0.036	0.081	0.101	0.046

Financial Inclusion: The Less Educated Get More Credit

	Credit Access ${ }_{i, t}$		$\log (\text { Credit Line })_{i, t}$	
	(1)	(2)	(3)	(4)
Panel A. Two-Stage Least Squares				
$\log (1+\text { In-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.093^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} \hline 0.024 \\ (0.044) \end{gathered}$	$\begin{gathered} 0.334^{* * *} \\ (0.109) \end{gathered}$	$\begin{gathered} \hline 0.038 \\ (0.073) \end{gathered}$
Panel B. First Stage for $\log (1+\mathrm{In} \text {-Person Payment Flow })_{i, t}$				
$\log (\text { Bike Placement })_{c, t}$	0.039***	0.043***	0.039***	0.053***
	(0.010)	(0.013)	(0.011)	(0.014)
F-Statistic	13.7	10.9	11.6	14.2
Adjusted R^{2}	0.554	0.563	0.528	0.483
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Subsample	Low Education	High Education	Low Education	High Education
Observations	1,065,769	171,938	657,878	121,194
Note:			${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$	

Model-Based Analysis

Why Do We Need a Model?

- What we have learned
- Exogenous payment adoption shock leads to more credit provision
- Positive credit provision effects are stronger for the underserved

Why Do We Need a Model?

- What we have learned
- Exogenous payment adoption shock leads to more credit provision
- Positive credit provision effects are stronger for the underserved
- What we do not know yet
- Real effects: consumer surplus, lender profit, default rate
- Mechanism: why payment data play an important role
- Quantification: the information value of payment data

Why Do We Need a Model?

- What we have learned
- Exogenous payment adoption shock leads to more credit provision
- Positive credit provision effects are stronger for the underserved
- What we do not know yet
- Real effects: consumer surplus, lender profit, default rate
- Mechanism: why payment data play an important role
- Quantification: the information value of payment data
- I try to achieve these goals with a simple structural model

Economy of the Model

- The cashless payment company as the only lender
- Offers a personalized credit line to each borrower
- Not rely on credit history or collateral information
- Same interest rate for everyone
- Different credit limits for different borrowers
- Sufficient funds

Economy of the Model

- The cashless payment company as the only lender
- Offers a personalized credit line to each borrower
- Not rely on credit history or collateral information
- Same interest rate for everyone
- Different credit limits for different borrowers
- Sufficient funds
- Borrowers' consumption gradually shifts from cash to digital money
- Cash user: lender does not know any information
- New digital money adopter: lender knows only the personal characteristics
- Digital money user: lender knows both personal characteristics and consumption

Overview of the Model

- There are two periods in the model Timeline: Details

Overview of the Model

- There are two periods in the model Timeline: Details
- First period: credit line provision, first income, credit usage, and consumption
- Second period: second income, credit payoff or default

Overview of the Model

- There are two periods in the model Timeline: Details
- First period: credit line provision, first income, credit usage, and consumption
- Second period: second income, credit payoff or default
- Random income flow: $e_{i t}=X_{i} \beta+y_{i}+\epsilon_{i t}$ Random Income Flow: Details Chracteristics Hidden Type Shock

Overview of the Model

- There are two periods in the model Timeline: Details
- First period: credit line provision, first income, credit usage, and consumption
- Second period: second income, credit payoff or default
- Random income flow: $e_{i t}=\underbrace{}_{i} \quad \beta+y_{i} \quad \epsilon_{i t} \quad$ Random Income Flow: Details
- Lender's problem: $\max _{1_{i}} R$. Chracteristics Hidden Type Shock

Lender's Problem: Details

Overview of the Model

- There are two periods in the model Timeline: Details
- First period: credit line provision, first income, credit usage, and consumption
- Second period: second income, credit payoff or default
- Random income flow: $e_{i t}=$

- Lender's problem: $\max _{I_{i}} R$.

- Borrower i's problem:

$$
\text { where } c_{i}=e_{i 1}+(1-R) \cdot b_{i} \text { and } 0 \leq b_{i} \leq l_{i}
$$

Estimation Results

- Estimated Parameter Values Estimation Procedure and Identification

Specifications
Summary Statistics

Parameter	Value	Description
σ_{ϵ}	864.8	Standard deviation of the unobservant idiosyncratic income shocks
σ_{y}	$1,344.0$	Standard deviation of the unobservant type of borrowers
A	$4,692.0$	External funding that can be used to pay off the credit balance
D	$57,039.7$	Utility cost to a borrower if she defaults in the second period
$R_{o l s}^{2}$	0.0807	R squared of the OLS regression that predicts income

Estimation Results

- Estimated Parameter Values

Estimation Procedure and Identification

Parameter	Value	Description
σ_{ϵ}	864.8	Standard deviation of the unobservant idiosyncratic income shocks
σ_{y}	$1,344.0$	Standard deviation of the unobservant type of borrowers
A	$4,692.0$	External funding that can be used to pay off the credit balance
D	$57,039.7$	Utility cost to a borrower if she defaults in the second period
$R_{o l s}^{2}$	0.0807	R squared of the OLS regression that predicts income

- Fitness of the model
- The model yields a prediction for the equilibrium credit line offered to each borrower
- Predicted credit lines explain 12% of cross-sectional variation in the data

$$
\begin{aligned}
\text { Credit Line }_{i}^{\text {observed }}= & 1777.70+0.94 \cdot \text { Credit Line }_{i}^{\text {cashless }} \\
& (89.81) \quad(0.01)
\end{aligned}
$$

Counterfactuals

- We are interested in the information value of payment data

Counterfactuals

- We are interested in the information value of payment data
- The key counterfactual: new digital money adopter
- Borrowers still borrow from the lender, but consume with cash
- Lender knows borrowers' personal characteristics, but not their consumption

Counterfactuals

- We are interested in the information value of payment data
- The key counterfactual: new digital money adopter
- Borrowers still borrow from the lender, but consume with cash
- Lender knows borrowers' personal characteristics, but not their consumption
- Steady State Comparison: New Digital Money Adopter vs. Digital Money User

| | Mean | | Nes DM Adopter | DM User |
| :--- | :---: | :---: | :---: | :---: | Mean Difference Relative Change

Conclusion

Conclusion

- Open questions (Berg, Fuster and Puri, 2021)
- Is information from payment flows a causal factor behind credit expansion?
- Does it benefit customers previously underserved by traditional financial institutions?

Conclusion

- Open questions (Berg, Fuster and Puri, 2021)
- Is information from payment flows a causal factor behind credit expansion?
- Does it benefit customers previously underserved by traditional financial institutions?
- This paper argue that answer to both questions is YES
- With unique data and a new identification strategy
- The first paper showing that payment information fuels BigTech credit to households

Conclusion

- Open questions (Berg, Fuster and Puri, 2021)
- Is information from payment flows a causal factor behind credit expansion?
- Does it benefit customers previously underserved by traditional financial institutions?
- This paper argue that answer to both questions is YES
- With unique data and a new identification strategy
- The first paper showing that payment information fuels BigTech credit to households
- Policy implications
- Service bundling in payment systems brings new opportunities
- Mobile payment can facilitate sustainable and inclusive finance

Strands of Related Literature (See the paper for a complete list of papers)

- Digital Payment and Credit: Parlour et al. (2022), Ghosh et al. (2022)
- This paper: Direct causal evidence in the consumer credit market
- Payment Adoption on Consumers: Mbiti and Weil (2015), Bachas et al. (2021), Riley (2018), Hong et al. (2020), Suri and Jack (2016), Brunnermeier and Payne (2022), Agarwal et al. (2021)
- This paper: Value of payment data and power of service bundling
- Consequences of Consumer Credit: Zinman (2015), Karlan and Zinman (2010), Morse (2011), Melzer (2011), Ausubel (1991), Di Maggio and Yao (2020), Di Maggio et al. (2022)
- This paper: Effects of BigTech consumer credit
- Determinants of Consumer Credit: Rampini and Viswanathan (2020), Chatterjee et al. (2020), Liberti and Petersen (2019), Berg et al. (2020), Rishabh (2022), Fuster et al. (2022)
- This paper: Information channel vs. enforcement channel

Different Types of Mobile Payments

(a) M-Pesa and Mobile Phone

(b) Apple Pay, Card, and Phone

(c) Alipay and Smart Phone

Mobile Payment Penetration across Countries

(a) 2021

Source: Statista Digital Market Outlook, World Bank Go Back

00

Mobile Payment Penetration across Countries

Source: Statista Digital Market Outlook, World Bank

Go Back

Declining Use of Cash in the US

Americans have become more likely to say they don't use cash for purchases in a typical week

$\%$ of U.S. adults who say they make__ (including things like groceries, gas, services or meals) in a typical week using cash

[^0]
Alipay: the "All-in-One" Approach to Mobile Payment

Source: IPO Prospectus of Ant Group, 2020

Features of Alipay's Huabei Credit Line

- No active application required
- Qualification status and credit line instantly available
- No price discrimination
- 0.05% daily rate (18.25% annually)
- Interest-free period of up to 40 days
- Excellent risk management
- Delinquency rate as of June 2019
- Huabei: 1.16\%
- Credit cards issued by public banks in China: 1.21\% to 2.49%

BigTech Credit is Booming Globally

Note: 2019 fintech lending volume figures are estimated on $A U, C N, E U, G B, N Z$ and US.
(a) BigTech and Fintech Credit

Source: Cornelli et al. (2020), CESifo Forum

Figure 2
Big Tech Credit Is Booming in Asia, the United States and Africa

(b) Global Boom in BigTech Credit

Summary Statistics

	N	Mean	Std	Min	p25	Median	p75	Max
Individual Level								
\# Active months ${ }_{i}$	41,485	31.86	11.38	1.00	24.00	37.00	41.00	41.00
Is Male ${ }_{i}$	41,214	0.54	0.50	0.00	0.00	1.00	1.00	1.00
Low Education ${ }_{i}$	41,459	0.88	0.33	0.00	1.00	1.00	1.00	1.00
Birth Year ${ }_{i}$	41,214	1,983.38	12.75	1,930.00	1,974.00	1,985.00	1,993.00	2,014.00
Bike User ${ }_{i}$	41,485	0.29	0.45	0.00	0.00	0.00	1.00	1.00
City-Month Level								
$\log (\text { Bike Placement })_{c, t}$	12,665	7.08	3.39	0.00	4.11	7.85	9.91	13.91
Individual-Month Level								
Credit Access $i_{\text {, }}$	1,321,837	0.62	0.49	0.00	0.00	1.00	1.00	1.00
$\log (\text { Credit Line })_{i, t}$	819,812	7.88	1.58	3.00	6.91	8.13	9.13	11.02
$\log (\text { In-Person Payment Flow })_{i, t}$	688,428	5.70	2.29	-4.61	4.31	6.04	7.27	15.88
$\log \left(\right.$ Online Payment Flow) $i_{i, t}$	843,993	5.76	1.80	-4.61	4.70	5.88	6.93	15.74
Virtual Credit Card Share in In-Person Payment ${ }_{i, t}$	688,428	0.34	0.42	0.00	0.00	0.04	0.82	1.00
Virtual Credit Card Share in Online Payment ${ }_{i, t}$	843,993	0.33	0.41	0.00	0.00	0.01	0.80	1.00
Compulsive Spending Share in In-Person Payment ${ }_{i, t}$	688,428	0.03	0.14	0.00	0.00	0.00	0.00	1.00
Compulsive Spending Share in Online Payment ${ }_{i, t}$	843,993	0.01	0.10	0.00	0.00	0.00	0.00	1.00

Alipay and Dockless Bike-Sharing Service

- Fast growing bike-sharing industry
- Alipay-bundled shared bikes
- Investment ≥ 3.5 billion dollars
- Strategic partnership
- Unlock bike directly with Alipay

Alipay Registration and Shared-Bike Adoption

00

Bike-Related Personal Characteristics

	Bike User ${ }_{i}$		
	(1)	(2)	(3)
Low Education ${ }_{i}$	-0.173***	-0.109***	-0.065***
	(0.009)	(0.010)	(0.009)
Older than Median ${ }_{i}$	-0.095***	-0.110***	-0.096***
	(0.005)	(0.005)	(0.004)
Early Alipay User ${ }_{i}$	-0.129***	-0.113***	-0.030***
	(0.007)	(0.006)	(0.005)
Male ${ }_{i}$	0.049***	0.059***	0.045***
	(0.004)	(0.004)	(0.004)
Pay with Real Name_{i}	0.088***	0.081***	0.012**
	(0.006)	(0.005)	(0.005)
Use Own Account ${ }_{i}$	0.076***	0.071***	0.033***
	(0.006)	(0.005)	(0.005)
Complete Profile ${ }_{i}$	0.012*	0.001	-0.012*
	(0.007)	(0.006)	(0.006)
Constant	0.421***		
	(0.013)		
City FE	NO	YES	YES
Occupation FE	NO	YES	YES
Controls Financial Activity Measures	NO	NO	YES
Clustered by City	YES	YES	YES
Observations	39,459	39,459	39,459
Adjusted R^{2}	0.123	0.178	0.260
Note:	* $p<0.1$;	* $p<0.05$;	${ }^{* *} p<0.01$

Bike Usage, Personal Characteristics, and Exclusion Restriction

	Dependent Variable					
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Ordinary Least Squares with Dependent Variable: $\log (1+\ln \text {-Person Payment Flow })_{i, t}$						
$\log (\text { Bike Placement })_{c, t}$	-0.022	0.008	0.029**	0.021**	-0.013	-0.010
	(0.014)	(0.010)	(0.011)	(0.009)	(0.015)	(0.010)
Bike User ${ }_{i} \times \log (\text { Bike Placement })_{c, t}$	0.139***	0.110***	0.092***	0.099***	0.057**	0.139***
	(0.029)	(0.018)	(0.017)	(0.021)	(0.025)	(0.029)
Characteristic Measure ${ }_{i} \times \log (\text { Bike Placement })_{c, t}$	0.036**	0.004	-0.038***	-0.023**	0.033*	0.036**
	(0.017)	(0.013)	(0.012)	(0.008)	(0.019)	(0.017)
Bike User ${ }_{i} \times$ Characteristic Measure $_{i} \times \log (\text { Bike Placement })_{c, t}$	-0.040	-0.017	0.009	0.009	0.046**	-0.045
	(0.031)	(0.018)	(0.025)	(0.020)	(0.023)	(0.031)
Adjusted R^{2}	0.552	0.552	0.552	0.552	0.552	0.552
Panel B. Ordinary Least Squares with Dependent Variable: $\log (1+\text { Credit Line })_{i, t}$						
$\log (\text { Bike Placement })_{c, t}$	0.009	0.014	0.020	0.004	-0.008	0.003
	(0.021)	(0.010)	(0.013)	(0.014)	(0.013)	(0.015)
Bike User ${ }_{i} \times \log (\text { Bike Placement })_{c, t}$	0.051*	0.053*	0.057*	0.056**	0.049*	0.042**
	(0.030)	(0.026)	(0.029)	(0.025)	(0.029)	(0.020)
Characteristic Measure $i_{i} \times \log (\text { Bike Placement })_{c, t}$	0.0001	-0.011	-0.023	0.008	0.024*	0.012
	(0.026)	(0.018)	(0.025)	(0.012)	(0.014)	(0.014)
Bike User ${ }_{i} \times$ Characteristic Measure $_{i} \times \log (\text { Bike Placement })_{c, t}$	0.012	0.016	-0.008	0.007	0.007	0.022
	(0.025)	(0.028)	(0.046)	(0.019)	(0.037)	(0.034)
Adjusted R^{2}	0.800	0.799	0.800	0.799	0.800	0.800
Personal Characteristic Measure	Low Education ${ }_{i}$	Older than Median ${ }_{i}$	Early Alipay User ${ }_{i}$	Male_{i}	Pay with Real Name_{i}	Use Own Account ${ }_{i}$
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Observations	1,237,707	1,237,707	1,237,707	1,237,707	1,237,707	1,237,707
Note:					${ }^{*} p<0.1 ;{ }^{* *} p$	<0.05; ${ }^{* * *} p<0.01$

Background of Bike Sharing Service

Low Cost of Usage

- 0.23 USD/first 15 min
- After the first $15 \mathrm{~min}, 0.08$ USD/ 15 min
- Unlimited plan: About 3 USD/month

Large User Base

- The size of the user base of shared bikes in China is 260 million as of late 2019
- Over 400 million Hellobike users in 2021

Direct Effects of Bike Usage

	$\log (1+\text { In-Person Payment Flow })_{i, t}$		$\log (1+\text { Credit Line })_{i, t}$	
	(1)	(2)	(3)	(4)
$\log (\text { Bike Placement })_{c, t}$	0.011		0.009	
	(0.009)		(0.010)	
One-Time Bike User ${ }_{i} \times \log (\text { Bike Placement })_{c, t}$	0.088***	0.072***	0.048**	0.035
	(0.020)	(0.019)	(0.023)	(0.025)
Repeat Bike User ${ }_{i} \times \log (\text { Bike Placement })_{c, t}$	0.106***	0.078***	0.062**	0.040
	(0.018)	(0.017)	(0.025)	(0.029)
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	-	YES	-
City \times Year-Month FE	NO	YES	NO	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Observations	1,238,309	1,238,309	1,238,309	1,238,309
Adjusted R^{2}	0.552	0.555	0.800	0.801
Note:	${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$			

Bike Placement and Local Economy

	$\log (\mathrm{GDP})_{c, t}$ (1)	$\begin{aligned} & \log (\text { GDP per capita })_{c, t} \\ & (2) \end{aligned}$	Fiscal Spending/GDP c, t (3)	Fiscal Income/GDP ${ }_{c, t}$ (4)
$\log (\text { Bike Placement })_{c, t}$	0.002	0.000	-0.001	0.000
	(0.002)	(0.002)	(0.001)	(0.000)
City FE	YES	YES	YES	YES
Year FE	YES	YES	YES	YES
Clustered by City and Year	YES	YES	YES	YES
Observations	895	775	886	891
Adjusted R^{2}	0.992	0.979	0.957	0.903
Note:			* $p<0.1$;	$<0.05 ;{ }^{* * *} p<0.01$

Staggered Placement of Shared Bikes

Normalized Bike Placement ${ }_{c, t}=\alpha_{0}+\sum_{\tau=-5}^{4} \beta_{\tau} \cdot \mathbb{1}(t=\tau) \cdot \mathbb{1}(\tau \neq-1)+\beta_{5} \cdot \mathbb{1}(t \geq 5)+\delta_{c}+\mu_{t}+\varepsilon_{c, t}$

Broad Distribution of Bike-Placement Shock

Why IV Estimate > OLS Estimate

- Reason 1: Omitted variables
- OLS can have a downward bias due to omitted variables
- Example: A negative health shock

Explanation with an Econometric Framework

- Reason 2: Non-monotone payment-credit relationship
- Below a threshold, payment flow \rightarrow information \rightarrow credit provision
- Above a threshold, payment flow \rightarrow over-spending \rightarrow risky \rightarrow less credit provision

Evidence of Non-Monotone Payment-Credit Relationship

OLS and IV Estimates

- An econometric framework with endogeneity
- OLS Estimate
- Assume $0<\alpha_{1}<1,0<\beta_{1}<1$, and $\varepsilon_{i, t}^{E E} \perp \varphi_{i, t}$, then

$$
\begin{aligned}
\hat{\alpha}_{1}^{O L S} & =\frac{\operatorname{Cov}\left(c l_{i, t}, i p f_{i, t}\right)}{\operatorname{Var}\left(i p f_{i, t}\right)} \\
& =\alpha_{1}+\underbrace{\frac{1}{1-\alpha_{1} \cdot \beta_{1}}}_{+} \cdot \underbrace{\frac{\operatorname{Var}\left(\delta_{i}+\theta_{t}+\varepsilon_{i, t}^{O V}+\varepsilon_{i, t}^{E E}\right)}{\operatorname{Var}\left(i p f_{i, t}\right)} \cdot \beta_{1}}_{+}+\underbrace{\frac{\operatorname{Cov}\left(\varepsilon_{i, t}^{O V}, \varphi_{i, t}\right)}{\operatorname{Var}\left(i f_{i, t}\right)}}_{+ \text {or }-}]
\end{aligned}
$$

- IV Estimate

$$
\begin{array}{r}
\circ \text { Given } \operatorname{Cov}\left(i p f_{i, t}, b p_{c, t}\right)=\frac{1}{1-\alpha_{1} \cdot \beta_{1}} \cdot \operatorname{Cov}\left(\varphi_{i, t}, b p_{c, t}\right) \neq 0 \\
\hat{\alpha}_{1}^{\prime V}=\frac{\operatorname{Cov}\left(c l_{i, t}, b p_{c, t}\right)}{\operatorname{Cov}\left(i p f_{i, t}, b p_{c, t}\right)}=\alpha_{1}
\end{array}
$$

Econometric Framework Setup

- Three Parties: Lender, Borrower i, Bike-Sharing Company
- Credit Supply: $c_{i, t}=\alpha_{0}+\alpha_{1} \cdot i p f_{i, t}+\delta_{i}+\theta_{t}+\varepsilon_{i, t}^{O V}+\varepsilon_{i, t}^{E E}$
- In-Person Payment Decision: ipf $f_{i, t}=\beta_{0}+\beta_{1} \cdot c l_{i, t}+\mu_{i}+\omega_{t}+\varphi_{i, t}$
- Exogenous Bike Placement Decision: $b p_{c, t}$
- Identifying Assumptions
- Both $\varepsilon_{i, t}=\varepsilon_{i, t}^{O V}+\varepsilon_{i, t}^{E E}$ and $\varphi_{i, t}$ are orthogonal to $1, \delta_{i}, \theta_{t}, \mu_{i}, \omega_{t}$
- $b p_{c, t}$ is a valid instrument for $i p f_{i, t}$:
$-\mathrm{E}\left[\left(\varepsilon_{i, t}^{O V}+\varepsilon_{i, t}^{E E}\right) \cdot b p_{c, t}\right]=0$
- $\mathrm{E}\left[\varphi_{i, t} \cdot b p_{c, t}\right] \neq 0$

Non-Monotone Payment-Credit Relationship

Evidence in Regressions

Non-Monotone Payment-Credit Relationship: Regression

		Normalized Credit Line ${ }_{i, t}$			
	(1)	(2)	(3)	(4)	
Normalized In-Person Payment Flow $_{i, t}$	$0.214^{* * *}$	$0.581^{* * *}$	$0.040^{* * *}$	$0.105^{* * *}$	
(Normalized In-Person Payment Flow $\left.{ }_{i, t}\right)^{2}$	(0.033)	(0.076)	(0.006)	(0.013)	
		$-0.448^{* * *}$		$-0.075^{* * *}$	
Constant	$0.436^{* * *}$	(0.064)		(0.009)	
	(0.042)	(0.043)			
Individual FE	NO	NO	YES	YES	
Year-Month FE	NO	NO	YES	YES	
Clustered by City and Year-Month	YES	YES	YES	YES	
Observations	$1,030,678$	$1,030,678$	$1,030,678$	$1,030,678$	
Adjusted R^{2}	0.016	0.022	0.767	0.767	
Note:		${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$			

Control for City \times Year-Month Fixed Effects

	Credit Access $_{\text {i,t }}$		$\log (\text { Credit Line })_{i, t}$	
	(1)	(2)	(3)	(4)
Panel A. Two-Stage Least Squares				
$\log (1+\ln \text {-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.115 * * * \\ (0.004) \end{gathered}$	$\begin{gathered} 0.108 * * * \\ (0.004) \end{gathered}$	$\begin{gathered} 0.398 * * * \\ (0.016) \end{gathered}$	$\begin{gathered} 0.418 * * * \\ (0.019) \end{gathered}$
Panel B. First Stage for $\log (1+\text { In-Person Payment Flow })_{i, t}$				
Bike User ${ }_{i} \times \log (\text { Bike Placement })_{c, t}$	$\begin{gathered} 0.209 * * * \\ (0.008) \end{gathered}$	$\begin{gathered} \hline 0.178 * * * \\ (0.008) \end{gathered}$	$\begin{gathered} 0.166^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 0.134^{* * *} \\ (0.007) \end{gathered}$
F-Statistic	772.9	476.0	503.2	343.0
Adjusted R^{2}	0.168	0.190	0.147	0.173
Panel C. Ordinary Least Squares				
$\log (1+\ln \text {-Person Payment Flow })_{i, t}$	0.054***	0.047***	0.147***	0.121***
	(0.001)	(0.001)	(0.004)	(0.004)
Adjusted R^{2}	0.193	0.245	0.181	0.363
City \times Year-Month FE	YES	YES	YES	YES
Controls Individual Characteristics	NO	YES	NO	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Observations	1,238,309	664,727	779,283	440,418
Note:		* $p<0.1$;	** $p<0.05$;	* $p<0.01$

In-Person Payment Flow and Future Credit Provision

	Credit Access $i_{, T}$			$\log (\text { Credit Line })_{i, T}$		
	$\begin{gathered} t+1 \\ (1) \end{gathered}$	$t+2$ (2)	$\begin{gathered} t+3 \\ (3) \end{gathered}$	$t+1$ (4)	$\begin{gathered} t+2 \\ (5) \end{gathered}$	$\begin{gathered} t+3 \\ (6) \end{gathered}$
Panel A. Two-Stage Least Squares						
$\log (1+\text { In-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.088^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} 0.085^{* * *} \\ (0.024) \end{gathered}$	$\begin{gathered} 0.083^{* * *} \\ (0.024) \end{gathered}$	$\begin{gathered} 0.250^{* * *} \\ (0.071) \end{gathered}$	$\begin{gathered} 0.242 * * * \\ (0.069) \end{gathered}$	$\begin{gathered} 0.235^{* * *} \\ (0.064) \end{gathered}$
Panel B. First Stage for $\log (1+\ln \text {-Person Payment Flow })_{i, t}$						
$\log (\text { Bike Placement })_{c, t}$	$\begin{gathered} \hline 0.041^{* * *} \\ (0.011) \end{gathered}$	$\begin{gathered} 0.042^{* * *} \\ (0.011) \end{gathered}$	$\begin{gathered} \hline 0.042 * * * \\ (0.011) \end{gathered}$	$\begin{gathered} 0.048^{* * *} \\ (0.012) \end{gathered}$	$\begin{gathered} \hline 0.048^{* * *} \\ (0.013) \end{gathered}$	$\begin{gathered} \hline 0.049 * * * \\ (0.013) \end{gathered}$
F-Statistic	15.4	15.1	15.4	15.0	14.6	15.0
Adjusted R^{2}	0.552	0.553	0.554	0.523	0.522	0.521
Panel C. Ordinary Least Squares						
$\log (1+\text { In-Person Payment Flow })_{i, t}$	0.008***	0.007***	0.006***	0.025***	0.026***	0.027***
	(0.001)	(0.001)	(0.001)	(0.003)	(0.003)	(0.003)
Adjusted R^{2}	0.743	0.750	0.757	0.837	0.839	0.841
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credit
Observations	1,199,746	1,161,435	1,123,295	775,512	763,560	750,694
Note:				${ }^{*} p<0.1$;	** $p<0.05$;	* $p<0.01$

Control for Past In-Person Payment Flow

	Credit Access $_{\text {i,t }}$			$\log (\text { Credit Line })_{i, t}$		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Two-Stage Least Squares						
$\log (1+\ln \text {-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.139^{* * *} \\ (0.038) \end{gathered}$	$\begin{gathered} \hline 0.154^{* * *} \\ (0.048) \end{gathered}$	$\begin{gathered} 0.157^{* * *} \\ (0.056) \end{gathered}$	$\begin{gathered} 0.388^{* * *} \\ (0.129) \end{gathered}$	$\begin{gathered} 0.457 * * * \\ (0.167) \end{gathered}$	$\begin{aligned} & 0.531^{* *} \\ & (0.204) \end{aligned}$
Panel B. First Stage for $\log (1+\ln \text {-Person Payment Flow })_{i, t}$						
$\log (\text { Bike Placement })_{c, t}$	$\begin{gathered} \hline 0.024^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} \hline 0.019^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} \hline 0.016^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} \hline 0.027^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 0.022^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} \hline 0.018^{* * *} \\ (0.005) \end{gathered}$
F-Statistic	16.7	14.0	11.0	16.4	14.5	12.3
Adjusted R^{2}	0.636	0.647	0.651	0.596	0.605	0.608
Panel C. Ordinary Least Squares						
$\log (1+\operatorname{In} \text {-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.007^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} \hline 0.006^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.006^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.015^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.012^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.010^{* * *} \\ (0.002) \end{gathered}$
Adjusted R^{2}	0.743	0.751	0.759	0.837	0.840	0.842
Controls $\log (1+\ln \text {-Person Payment Flow })_{i, t-1}$	YES	YES	YES	YES	YES	YES
Controls $\log (1+\ln \text {-Person Payment Flow })_{i, t-2}$	NO	YES	YES	NO	YES	YES
Controls $\log (1+\ln \text {-Person Payment Flow })_{i, t-3}$	NO	NO	YES	NO	NO	YES
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credit
Observations	1,199,825	1,161,573	1,123,548	775,601	763,711	750,940
Note:				${ }^{*} p<0.1$	p<0.05;	${ }^{* *} p<0.01$

Control for Bike Usage

	Credit Access ${ }_{i, t}$		$\log (\text { Credit Line })_{i, t}$	
	(1)	(2)	(3)	(4)
Panel A. Two-Stage Least Squares				
$\log (1+\ln \text {-Person Payment Flow })_{i, t}$	0.098***	$0.097^{* * *}$	0.329***	0.329***
	(0.030)	(0.030)	(0.112)	(0.112)
$\log (1+\text { Measure of Bike Usage })_{i, t}$	-0.034**	-0.028**	-0.112**	-0.094**
	(0.015)	(0.012)	(0.048)	(0.041)
Panel B. First Stage for $\log (1+\text { In-Person Payment Flow })_{i, t}$				
$\log (\text { Bike Placement })_{c, t}$	0.034***	0.034***	0.036***	0.036***
	(0.010)	(0.010)	(0.011)	(0.011)
$\log (1+\text { Measure of Bike Usage })_{i, t}$	0.497***	0.391***	0.408***	0.324***
	(0.022)	(0.030)	(0.021)	(0.027)
F-Statistic	11.2	11.2	10.2	10.2
Adjusted R^{2}	0.554	0.554	0.530	0.529
Panel C. Ordinary Least Squares				
$\log (1+\ln \text {-Person Payment Flow })_{i, t}$	0.010***	0.010***	0.021***	0.022***
	(0.001)	(0.001)	(0.003)	(0.003)
$\log (1+\text { Measure of Bike Usage })_{i, t}$	0.010***	0.007***	0.015***	0.007*
	(0.002)	(0.001)	(0.005)	(0.004)
Adjusted R^{2}	0.740	0.740	0.836	0.836
Measure of Bike Usage	\# Bike Rides	Riding Distance	\# Bike Rides	Riding Distance
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Observations	1,238,309	1,238,309	779,283	779,283
Note:		*	$<0.1 ;{ }^{* *} p<0$	05; ${ }^{* * *} p<0.01$

Control for Online Payments

	Credit Access ${ }_{i, t}$		$\log (\text { Credit Line })_{i, t}$	
	(1)	(2)	(3)	(4)
Panel A. Two-Stage Least Squares				
$\log (1+\ln \text {-Person Payment Flow })_{i, t}$	$\begin{gathered} \hline 0.086^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} \hline 0.085^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} 0.280^{* * *} \\ (0.085) \end{gathered}$	$\begin{gathered} 0.277^{* * *} \\ (0.082) \end{gathered}$
$\log (1+\text { Measure of Online Payment })_{i, t}$	$\begin{gathered} -0.009 \\ (0.006) \end{gathered}$	$\begin{aligned} & -0.028 \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.037^{*} \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.107^{*} \\ & (0.054) \end{aligned}$
Panel B. First Stage for $\log (1+\ln \text {-Person Payment Flow })_{i, t}$				
$\log (\text { Bike Placement })_{c, t}$	$\begin{gathered} \hline 0.041^{* * *} \\ (0.010) \end{gathered}$	$\begin{gathered} \hline 0.042^{* * *} \\ (0.010) \end{gathered}$	$\begin{gathered} \hline 0.043^{* * *} \\ (0.012) \end{gathered}$	$\begin{gathered} \hline 0.044^{* * *} \\ (0.012) \end{gathered}$
$\log (1+\text { Measure of Online Payment })_{i, t}$	$\begin{gathered} 0.260^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 0.716^{* * *} \\ (0.015) \end{gathered}$	$\begin{gathered} 0.246^{* * *} \\ (0.008) \end{gathered}$	$\begin{gathered} 0.649^{* * *} \\ (0.018) \end{gathered}$
F-Statistic	16.0	16.2	14.0	14.3
Adjusted R^{2}	0.572	0.574	0.544	0.545
Panel C. Ordinary Least Squares				
$\log (1+\ln \text {-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.008^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} \hline 0.008^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.018^{* * *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.018^{* * *} \\ (0.002) \end{gathered}$
$\log (1+\text { Measure of Online Payment })_{i, t}$	$\begin{gathered} 0.011^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} 0.027 * * * \\ (0.002) \end{gathered}$	$\begin{gathered} 0.027 * * * \\ (0.003) \end{gathered}$	$\begin{gathered} 0.061^{* * *} \\ (0.007) \end{gathered}$
Adjusted R^{2}	0.742	0.742	0.837	0.836
Measure of Online Payment	Online Payment Flow	\# Online Transactions	Online Payment Flow	\# Online Transactions
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Observations	1,238,309	1,238,309	779,283	779,283
Note:			*p<0.1;	* $p<0.05 ;{ }^{* * *} p<0.01$

Credit Access and Payment Changes

$\log (1+\text { Total Payment Flow })_{i, t}=\alpha_{0}+\sum_{\tau=-5}^{4} \beta_{\tau} \cdot \mathbb{1}(t=\tau) \cdot \mathbb{1}(\tau \neq-1)+\beta_{5} \cdot \mathbb{1}(t \geq 5)+\delta_{i}+\mu_{t}+\varepsilon_{i, t}$

Setup of the Illustrative Example

- There are a monopolistic lender and a continuum of borrowers
- Type of borrower $i: \theta_{i} \sim U[0,1]$
- Lender's expected profit of lending l_{i} to borrower i, given θ_{i}

$$
\pi_{i}\left(\theta_{i}, l_{i}\right)= \begin{cases}\theta_{i}+2 \cdot \theta_{i} \cdot l_{i}-l_{i}^{2}-1 & , \text { if } l_{i}>0 \\ 0 & , \text { if } l_{i}=0\end{cases}
$$

- Properties of the expected profit function
- Fix credit line $I_{i}, \pi_{i}\left(\theta_{i}, l_{i}\right)$ increases with borrower type θ_{i}
- Fix θ_{i}, \exists optimal credit line $I^{*}\left(\theta_{i}\right)$ that maximizes $\pi_{i}\left(\theta_{i}, l_{i}\right)$
- If optimal credit line $I^{*}\left(\theta_{i}\right)$ is non-zero, $I^{*}\left(\theta_{i}\right)$ increases with θ_{i}
- When the lender only knows the type distribution of a group, it will lend the same to everyone if expected profit is positive

Age and Payment-Credit Relationship

	Credit Access $_{i, t}$		$\log (\text { Credit Line })_{i, t}$	
	(1)	(2)	(3)	(4)
Panel A. Two-Stage Least Squares				
$\log (1+\text { In-Person Payment Flow })_{i, t}$	$\begin{gathered} 0.124 * * * \\ (0.041) \end{gathered}$	$\begin{aligned} & 0.047^{* *} \\ & (0.020) \end{aligned}$	$\begin{gathered} 0.440 * * * \\ (0.177) \end{gathered}$	$\begin{aligned} & \hline 0.176^{* *} \\ & (0.065) \end{aligned}$
Panel B. First Stage for $\log (1+\text { In-Person Payment Flow })_{i, t}$				
$\log (\text { Bike Placement })_{c, t}$	0.032***	0.049***	0.030***	0.054***
	(0.010)	(0.012)	(0.011)	(0.013)
F-Statistic	9.7	17.8	7.0	16.6
Adjusted R^{2}	0.552	0.539	0.559	0.483
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Subsample	Older than Median	Younger than Median	Older than Median	Younger than Median
Observations	577,711	654,823	335,670	443,402
Note:			${ }^{*} p<0.1 ;{ }^{*}$	$<0.05 ;^{* * *} p<0.01$

Timeline

Go Back

Timeline

Timeline

Timeline

Timeline

Timeline

Timeline

Random Income Flow

- Income flow of borrow i in period $t=1,2$ is determined by:

$$
e_{i t}=X_{i} \beta+y_{i}+\epsilon_{i t}
$$

where

- X_{i} is a vector of observant characteristics of borrower i
- y_{i} is an unobservant type of borrower i
- We assume $y_{i} \in \mathcal{N}\left(0, \sigma_{y}^{2}\right)$
- The density function is $g(y)=\frac{1}{\sigma_{y} \sqrt{2 \pi}} e^{-y^{2} / 2 \sigma_{y}^{2}}$
- $\epsilon_{i t}$ is an unobservant shock to borrower i in period t
- We assume idiosyncratic shock $\epsilon_{i t} \in \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$ and $\epsilon_{i t} \Perp y_{i}$
- The density function is $f(\epsilon)=\frac{1}{\sigma_{\epsilon} \sqrt{2 \pi}} e^{-\epsilon^{2} / 2 \sigma_{\epsilon}^{2}}$

Lender's Problem

- In period $t=1$, the lender decides to offer a credit line of I_{i} to borrower i, and charges a unit fee of R for used credit b_{i}. In the digital payment era, we assume all the consumption are paid with digital money, and the lender observes borrower i 's consumption c_{i}
- In period $t=2$, the lender suffers a loss of the credit line amount l_{i} if the borrower i defaults
- The lender choose optimal credit line I_{i} to maximize its profit

$$
\max _{l_{i}} R \cdot b_{i}-\mathrm{E}\left[\mathbb{1}_{i}^{D} \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right] \cdot l_{i}
$$

where $\mathbb{1}_{i}^{D}$ is a dummy variable indicating whether borrower i defaults in period $t=2$

Borrower i's Problem

- In period $t=1$, the borrower i receives the random income flow $e_{i 1}$, knows about the credit line available to her l_{i}, decides the amount of credit she would like to use b_{i}, and make the consumption c_{i}
- We assume the borrower is hand to mouth in period $t=1$, and the consumption is

$$
c_{i}=e_{i 1}+(1-R) \cdot b_{i}
$$

- In period $t=2$, borrower i receives the random income flow $e_{i 2}$, and tries to pay off the credit balance b_{i} with the income and an external iliquid asset A. If the balance cannot be paid off, borrower i defaults and suffers a default cost D
- Borrower i is risk-neutral and discounts future cash flows, she chooses optimal used credit b_{i} to maximize the utility

$$
\max _{b_{i}} c_{i}-\rho \cdot \mathrm{E}\left[\mathbb{1}_{i}^{D} \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right] \cdot D-\rho \cdot\left(1-\mathrm{E}\left[\mathbb{1}_{i}^{D} \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right]\right) \cdot b_{i}
$$

such that

$$
0 \leq b_{i} \leq I_{i}
$$

First Order Conditions

- FOC of the lender's problem

$$
R \cdot \frac{\partial b_{i}}{\partial l_{i}}-\Phi\left(\frac{b_{i}-A-e_{i 1}}{\sqrt{2} \sigma_{\epsilon}}\right)-\phi\left(\frac{b_{i}-A-e_{i 1}}{\sqrt{2} \sigma_{\epsilon}}\right) \cdot \frac{l_{i}}{\sqrt{2} \sigma_{\epsilon}} \cdot \frac{\partial b_{i}}{\partial l_{i}}=0
$$

- FOC of the borrower i's problem

$$
(1-R)-\phi\left(\frac{b_{i}-A-e_{i 1}}{\sqrt{2} \sigma_{\epsilon}}\right) \cdot \frac{\rho \cdot\left(D-b_{i}\right)}{\sqrt{2} \sigma_{\epsilon}}-\rho \cdot\left[1-\Phi\left(\frac{b_{i}-A-e_{i 1}}{\sqrt{2} \sigma_{\epsilon}}\right)\right]=0
$$

Estimation Steps and Identification

- Calibrate credit usage fee $R=0.03$ and discounting parameter $\rho=0.9$
- Assume borrower i has fully shifted from cash to digital money for consumption when her credit line stops increasing
- Assume borrowers are hand-to-mouth in these months, thus $c_{i}=e_{i 1}+(1-R) \cdot b_{i}$
- The observed consumption c_{i} and used credit b_{i} imply monthly income $e_{i 1}$
- Monthly income is determined by $e_{i 1}=X_{i} \beta+y_{i}+\epsilon_{i 1}$
- The variations in monthly income help us to estimate σ_{ϵ}
- Use the average monthly values as the observed c_{i}, b_{i} and $e_{i 1}$ respectively
- Estimate the parameters β and σ_{y} with a cross-sectional regression
- Run the OLS regression: $e_{i 1}=X_{i} \beta+y_{i}+\epsilon_{i 1}$
- Let observables X_{i} include gender, education, age, and city
- Estimate external funding A by using lender's FOC as the moment condition
- Assume lender uses heuristics to predict used credit: $b_{i}=\lambda \cdot I_{i}$
- Estimate default cost D by using borrower's FOC as the moment condition

Expectation of Default

- When lender knows borrower i's consumption c_{i} (Digital Money User)

$$
\begin{aligned}
& \mathrm{E}\left[\mathbb{1}_{i}^{D} \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right]=\Phi\left(\frac{b_{i}-A-e_{i 1}}{\sqrt{2} \sigma_{\epsilon}}\right) \\
= & \mathrm{E}\left[\mathbb{1}\left(X_{i} \beta+y_{i}+\epsilon_{i 1}-\epsilon_{i 1}+\epsilon_{i 2}+A-b_{i}<0\right) \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right] \\
= & \int_{-\infty}^{+\infty} \mathbb{1}\left(\epsilon_{i 2}-\epsilon_{i 1}<b_{i}-A-e_{i 1} \mid b_{i}, e_{i 1}\right) f\left(\epsilon_{i 1}\right) f\left(\epsilon_{i 2}\right) d \epsilon_{i 1} d \epsilon_{i 2}
\end{aligned}
$$

- When lender doesn't know consumption c_{i} (New Digital Money Adopter)

$$
\begin{aligned}
& \mathrm{E}\left[\mathbb{1}_{i}^{D} \mid X_{i}, b_{i} ; \beta, R, A\right]=\Phi\left(\frac{b_{i}-A-X_{i} \beta}{\sqrt{\sigma_{\epsilon}^{2}+\sigma_{y}^{2}}}\right) \\
= & \mathrm{E}\left[\mathbb{1}\left(X_{i} \beta+y_{i}+\epsilon_{i 2}+A-b_{i}<0\right) \mid X_{i}, b_{i} ; \beta, R, A\right] \\
= & \int_{-\infty}^{+\infty} \mathbb{1}\left(y_{i}+\epsilon_{i 2}<b_{i}-A-X_{i} \beta \mid X_{i}, b_{i} ; \beta\right) g(y) f\left(\epsilon_{i 2}\right) d y d \epsilon_{i 2}
\end{aligned}
$$

Expectation of Borrower i's Default

- When the agent knows borrower i's consumption c_{i}

$$
\begin{aligned}
& \mathrm{E}\left[\mathbb{1} D \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right] \\
= & \mathrm{E}\left[\mathbb{1}\left(e_{i 2}+A-b_{i}<0\right) \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right] \\
= & \mathrm{E}\left[\mathbb{1}\left(X_{i} \beta+y_{i}+\epsilon_{i 2}+A-b_{i}<0\right) \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right] \\
= & \mathrm{E}\left[\mathbb{1}\left(X_{i} \beta+y_{i}+\epsilon_{i 1}-\epsilon_{i 1}+\epsilon_{i 2}+A-b_{i}<0\right) \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right] \\
= & \mathrm{E}\left[\mathbb{1}\left(e_{i 1}-\epsilon_{i 1}+\epsilon_{i 2}+A-b_{i}<0\right) \mid X_{i}, b_{i}, c_{i} ; \beta, R, A\right] \\
= & \mathrm{E}\left[\mathbb{1}\left(\epsilon_{i 2}-\epsilon_{i 1}<b_{i}-A-e_{i 1}\right) \mid b_{i}, e_{i 1}\right] \\
= & \int_{-\infty}^{+\infty} \mathbb{1}\left(\epsilon_{i 2}-\epsilon_{i 1}<b_{i}-A-e_{i 1} \mid b_{i}, e_{i 1}\right) f\left(\epsilon_{i 1}\right) f\left(\epsilon_{i 2}\right) d \epsilon_{i 1} d \epsilon_{i 2} \\
= & \Phi\left(\frac{b_{i}-A-e_{i 1}}{\sqrt{2} \sigma_{\epsilon}}\right)
\end{aligned}
$$

Expectation of Borrower i's Default

- When the agent doesn't know borrower i's consumption c_{i}
- E.g. when the borrower makes consumption with cash instead of digital money, the lender does not know this information

$$
\begin{aligned}
& \mathrm{E}\left[\mathbb{1} D \mid X_{i}, b_{i} ; \beta, R, A\right] \\
= & \mathrm{E}\left[\mathbb{1}\left(e_{i 2}+A-b_{i}<0\right) \mid X_{i}, b_{i} ; \beta, R, A\right] \\
= & \left.\mathrm{E} \mathbb{1}\left(X_{i} \beta+y_{i}+\epsilon_{i 2}+A-b_{i}<0\right) \mid X_{i}, b_{i} ; \beta, R, A\right] \\
= & \mathrm{E}\left[\mathbb{1}\left(y_{i}+\epsilon_{i 2}<b_{i}-A-X_{i} \beta\right) \mid X_{i}, b_{i} ; \beta\right] \\
= & \int_{-\infty}^{+\infty} \mathbb{1}\left(y_{i}+\epsilon_{i 2}<b_{i}-A-X_{i} \beta \mid X_{i}, b_{i} ; \beta\right) g(y) f\left(\epsilon_{i 2}\right) d y d \epsilon_{i 2} \\
= & \Phi\left(\frac{b_{i}-A-X_{i} \beta}{\sqrt{\sigma_{\epsilon}^{2}+\sigma_{y}^{2}}}\right)
\end{aligned}
$$

Estimation Specifications

- Data cleaning
- Consumption and used credit are winsorized at 5\% and 95\%
- The months with zero consumption are dropped
- OLS regression specification

$$
\begin{aligned}
e_{i 1}=\beta_{0}+\beta_{\text {male }} \cdot \mathbb{1}_{i}^{m a l e}+ & \sum_{e d u \in U} \beta_{e d u} \cdot \mathbb{1}_{i}^{e d u} \\
& +\sum_{k \in K} \beta_{k} \cdot \mathbb{1}_{i}^{k-5<a g e \leq k}+\sum_{\text {city } \in C} \beta_{\text {city }} \cdot \mathbb{1}_{i}^{\text {city }}+u_{i}
\end{aligned}
$$

where $U=\{$ Below College, Undergraduate, Graduate $\}$, $K=\{1930,1935, \ldots, 2010\}, C$ include 340 unique cities in China, and error term $u_{i}=y_{i}+\epsilon_{i 1}$, thus $u_{i} \in \mathcal{N}\left(0, \sigma_{y}^{2}+\sigma_{\epsilon}^{2}\right)$

Distribution of Observed Variables

	N	Mean	Std	Min	p25	Median	p75	Max
c_{i}	38,276	$1,595.1$	$2,049.9$	0.0	134.4	715.5	$2,210.5$	$7,606.7$
b_{i}	38,276	487.7	732.9	0.0	0.0	56.3	731.0	$2,377.8$
$e_{i 1}$	38,276	$1,122.0$	$1,665.8$	0.0	48.8	344.2	$1,431.9$	$7,606.7$
l_{i}	38,276	$7,145.5$	$10,256.8$	0.0	0.0	$3,000.0$	$10,000.0$	$61,000.0$

Distributional Effects

- The payment information leads to better financial inclusion

	$\Delta \log \left(\text { Credit }^{\text {Line }}{ }_{i}\right), \%$ (1)	$\Delta \log$ (Consumer $^{\text {Welfare }_{i}}$), $\%$ (2)	$\Delta \log \left(\text { Lendê } \text { Profit }_{i}\right), \%$ (3)	$\Delta \log \left(\right.$ Annualized Default Rate $\left.{ }_{i}\right), \%$ (4)
Low Education ${ }_{i}$	1.558**	0.036***	0.708***	0.007**
	(0.786)	(0.011)	(0.222)	(0.003)
Older than Median ${ }_{i}$	1.164**	0.027***	0.392***	-0.001
	(0.530)	(0.007)	(0.150)	(0.002)
Male ${ }_{\text {i }}$	1.326***	0.009	0.128	-0.0003
	(0.493)	(0.007)	(0.139)	(0.002)
City FE	YES	YES	YES	YES
Observations	38,008	38,008	38,008	38,008
R^{2}	0.031	0.006	0.009	0.007
Note:				${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$

[^0]: Note: Respondents who did not give an answer are not shown.
 Source: Survey of U.S. adults conducted July 5-17, 2022.
 PEW RESEARCH CENTER

