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Traditional AI/ML vs. Generative Al/LLMs in Finance
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Traditional AlI/ML

Generative Al / LLMs

Goal

Techniques

Data

Strength

Use Cases

Risks

Predictive modeling, classification,
pattern detection

Regression, trees, SVMs, neural nets,
clustering

Mostly structured (e.g., numerical
finance data)

Statistical learning from data patterns

Credit scoring, fraud detection, risk
modeling, trading signals

Overfitting, bias, lack of interpretability

Content generation, summarization,
reasoning

Transformers (e.g., GPT), GANs, VAEs

Primarily unstructured text/code;
increasingly multimodal

Contextual understanding, natural
language generation

Robo-advising, sentiment/narrative
analysis, report/code generation

Hallucinations, bias, privacy leaks,
explainability, misuse
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LLMs as Tools

Predict stock returns (e.g., Chen et al., 2022)—via sentiment identification (Garcia
et al., 2023; Chang et al., 2023), understand investor behavior (Chen et al., 2024d),
measure market uncertainty (Audrino et al., 2024), help trading (Chen et al., 2024c)
Al financial analyst (Zhou et al., 2024; Dong, 2024)

Investment companies’ reliance on generative Al (Sheng et al., 2024), analysts’ Al
usage (Christ et al., 2024)

Writing academic papers (Novy-Marx and Velikov, 2025) and facilitate academic
research (Korinek, 2023)

Shocks to workers (e.g., Eloundou et al., 2024; Brynjolfsson et al., 2025)

Analyzing unstructured information (e.g., Cong et al., 2024), e.g., 10-k filings
(Shaffer and Wang, 2024; Serafeim, 2024), analyst reports (Lv, 2024; Li et al., 2024;
Bastianello et al., 2024), SEC filings (Krockenberger et al., 2024)
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LLMs as Economic Agents

Social experiments as a homo silicus (Horton, 2023; Bini et al., 2025)
Ethics and risk preferences of LLMs (Ouyang et al., 2024)

Rational budgetary decisions (Chen et al., 2023)

LLM-based pricing agents (Fish et al., 2024)

Engage in social interactions (Manning et al., 2024)

LLMs rely on associative memory to make decisions (Zheng, 2025)

Professional forecasters (Hansen et al., 2024)
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New Data

Text-based industry classifications (e.g., Hoberg and Phillips, 2016)
Extracting manager expectations (e.g., Jha et al., 2024b)

Analyzing conference calls (Jha et al., 2024a)

Global business networks (Breitung and Miiller, 2025)

Production networks (Fetzer et al., 2024)

Competitor networks (Hoberg et al., 2024)

Fed speak (Hansen and Kazinnik, 2023)

Evaluating innovations (Chen et al., 2019)

Text algorithms in economics (Ash and Hansen, 2023)
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Al Investment and Firm Performance

OXFORD

Firm value, growth, and product innovation:
Al as a tool to spur growth: Product Innovation & Process Efficiency

1 market valuation (Ahmadi et al., 2023; Eisfeldt et al., 2023; Babina et al., 2024;
Bertomeu et al., 2025; Rock, 2019)

1 growth in sales and employment(Babina et al., 2024)

1 product innovation (Cockburn et al., 2018; Babina et al., 2024)

1 product quality (Fedyk et al., 2022)

J probability to exit and be merged for large firms (Lu et al., 2024)

Measure of Al investments: job posting and resume data (e.g., Babina et al., 2024)
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Al as an External Force
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Organizational transformation
Shifts in workforce skills and flattening hierarchies (Babina et al., 2023a)
Autonomous vs. non-autonomous Al (Ide and Talamas, forthcoming)
Al manager (Campello et al., 2023)
Path dependency (Schubert, 2025)
Risk
Higher systematic risk (Babina et al., 2023b)
Al-adoption can backfire—Agency problem (Chen and Han, 2024)
"Al washing" (Barrios et al., 2024)
Financial markets communications
Fraud detection (Hobson et al., 2012)
Startup pitches videos (Hu and Ma, 2024), corporate executive presentations (Cao
et al., 2024a), Earnings Conference Q&A (Bai et al., 2023)
How to talk when a machine is listening? — Sentiment management in disclosures
(Cao et al., 2023)

10/82



N

N
Said §
Business
School

Table of Contents

3. Al and Household Finance

11/82



How Al Influences Households
Financial inclusion

ML leads to disparity in rates (Fuster et al., 2022)
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Cashless payment adoption increases credit access (e.g., Ouyang, 2021)
Financial services
Interest rate liberalization through FinTech (Buchak et al., 2021)

Robo-advising provides some benefits (Rossi and Utkus, 2024; D’Acunto et al., 2019;
D’Acunto and Rossi, 2023; Chak et al., 2022), but human experts continue to add
unique value (Greig et al., 2024)

Al advising on soft information and hard decisions (Huang and Ouyang, 2025)
Decision making
Algorithm aversion on robo-advising (Greig et al., 2024)

Data privacy and data sharing (Tang, 2019; Chen et al., 2021; Bergemann and
Bonatti, 2024)

Data protection (e.g., Matos and Adjerid, 2022)
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Al as a Shock to Labor Market

S
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Shifts in labor demand (Jiang et al., 2025b; Acemoglu et al., 2022; Lyonnet and Stern,
2022; Gofman and Jin, 2024) and occupational exposure (Webb, 2019; Jiang et al.,

2025a; Hampole et al., 2025)

Productivity impact (Seamans and Raj, 2018; Alderucci et al., 2020; Eloundou et al.,
2024)—randomized experiments (Brynjolfsson et al., 2025; Kanazawa et al., 2022;
Noy and Zhang, 2023; Peng et al., 2023).

Human-Al interactions (Agrawal et al., 2019b), and for high skilled workers
(Grennan and Michaely, 2020)

Risks of Al (Acemoglu, 2021; Acemoglu and Restrepo, 2018), implementation lags
(Brynjolfsson et al., 2019), and policy implications (Agrawal et al., 2019a; Furman
and Seamans, 2019)

Accelerate discovery rates in complex knowledge spaces (Agrawal et al., 2018)
Knowledge production (Abis and Veldkamp, 2024)
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Risk and Challenges in the Al Era

Algorithmic bias of ChatGPT (Fedyk et al., 2024)

Look-ahead bias (Glasserman and Lin, 2023) and the "Garbage in, Garbage out"
critique of LLM (Bender et al., 2021)

Regulating algorithmic decisions (e.g., Clark and Hadfield, 2019; Blattner et al.,
2021)

Biases in Al- and ML-generated variables (Battaglia et al., 2024), substantial gap
between average accuracy and self-reported confidence (Yoo, 2024; Chen et al.,
20242)

Al collusion (e.g., Johnson and Sokol, 2020; Dou et al., 2024)
Setting Al standards (Canayaz and Wang, 2024)

The general data protection regulation (GDPR) (e.g., Matos and Adjerid, 2022;
Johnson et al., 2023; Goldberg et al., 2024)

Managers’ perceptions on ethical issues related to Al (Cuéllar et al., 2024)
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Future Directions and Open Questions

Causality over Correlation
How can we isolate the causal impact of Al on firms, markets, and households?

Interpretability & Economic Insight
Can we “open the black box” to uncover underlying economic mechanisms?

LLMs as Economic Agents
What are the potentials & limits of using LLMs in simulated economic experiments?

Governance and Regulation
How do we build regulatory frameworks to address bias, collusion, and privacy?

Welfare & Long-Term Structure
What are Al’s structural effects on inequality, competition, and market stability?

Human-Al Complementarity
Which financial tasks should remain human-led? How do we build hybrid systems
that foster trust and inclusion?
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Effect of Al on the wider economy (Furman and Seamans, 2019)

Generative Al as a research topic in finance and as a technology shock to methods
for financial research (Eisfeldt and Schubert, 2025)

Natural language processing (NLP) tools used in financial economics research
(Hoberg and Manela, 2025)

Al as a tool to analyze alternative data (Cao et al., 2024b)
LLM-based multi-agents (Guo et al., 2024)
ML in portfolio decisions (Guidolin et al., 2024)
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Traditional Challenges:
High-dimensional predictor space (100+ firm characteristics)
Low signal-to-noise ratios in return prediction
OLS overfits when p (predictors) large relative to n (observations)

The “factor zoo” problem: 316 documented anomalies (Harvey et al., 2016)

What ML Brings:
Flexible functional forms capture nonlinearities
Automated variable selection handles high dimensions
Regularization prevents overfitting

Out-of-sample validation ensures robustness
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The Asset Pricing Problem

Goal: Predict individual stock excess returns

ritt1 = Ee[ri 1] + €i 41

Conditional Expectation Model:

Et[ri,t+1] :f(Zi,t? 9)
where z; ; = vector of characteristics (size, value, momentum, profitability, etc.)

Approaches:
Traditional: f(z; 0) = z .3 (linear, restrictive)

Machine Learning: f(-) highly nonlinear, captures interactions
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Regularization Methods: Ridge and LASSO
Ridge Regression (L2):

n

p
Aridge . ! 0\2 2
pries = argmin Z(r,-—z,ﬂ) +)\Zﬂj

i=1 j=1

Shrinks all coefficients toward zero
Handles multicollinearity
No variable selection

LASSO (L1):

n

p
5550 — argmin 4 S (i~ 1) + 3|5

i=1 j=1

Sets many coefficients exactly to zero (sparsity)
Performs automatic variable selection

High-frequency prediction (Chinco et al., 2019), factor testing (Feng et al., 2020)
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Elastic Net
Combines L1 and L2 penalties:

BN = arg mﬁin {Z(n — 2B + A [allflh + (1 = o)[16]13] }

i=1

Key Properties:
Performs variable selection (via L1)
Handles correlated predictors (via L2)
Encourages grouping effect

Two tuning parameters: A (penalty strength) and « (L1/L2 mix)

Applications:
Market return prediction (Dong et al., 2022)
Mutual fund selection with positive alpha (DeMiguel et al., 2023)
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Principal Component Analysis (PCA)

Idea: Extract latent factors from high-dimensional characteristics
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Method: Find orthogonal directions maximizing variance
PCi=Zw;, j=1,...,k

where w; are eigenvectors of covariance matrix Z'Z

Properties:
Unsupervised (doesn’t use returns)
Orthogonal components by construction
May capture variance but miss return predictability

Asset Pricing Extensions:
IPCA (Kelly et al., 2019): Characteristics instrument time-varying factor loadings
RP-PCA (Lettau and Pelger, 2020): ldentifies factors explaining both covariance
and returns
Group LASSO (Freyberger et al., 2020): Nonparametric selection, finds 11-14 key
characteristics s
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Partial Least Squares (PLS) s
School

Key Difference from PCA: Supervised dimension reduction
PCA: Maximizes variance in predictors (unsupervised)

PLS: Maximizes covariance with returns (supervised)
Algorithm: Sequentially extract components

wj = arg Hm”ax Cov(ZWw, r)
wi|=1

Advantage: Explicitly targets predictive power for returns

Performance: Outperforms PCA and Fama-MacBeth regression for return prediction
(Light et al., 2017)
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Decision Trees and Random Forests

Decision Trees:
Recursive partitioning: Split predictor space into regions
Prediction: Average return within each region

Automatically detect interactions (e.g., value effect stronger for small stocks)

Problem: High variance, unstable

Random Forests: Ensemble of many trees
Bootstrap sampling + random feature selection
Average predictions across trees
Dramatically reduces variance
Among the top performers: R3¢ = 0.33% monthly (Gu et al., 2020)

V///4
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Gradient Boosting

Key Difference: Sequential learning (vs. parallel in Random Forests)

Algorithm:
Initialize: f)(z) = 7
Form=1toM:
Compute residuals: u(™ = r — F(m=1)(z)

Fit shallko tree to residuals
Update: f(m) :f(m_1) —|— V- h(m)

Regularization:
Learning rate v (shrinkage): typical 0.01-0.1
Shallow trees (depth 3-6): weak learners

Subsampling: stochastic gradient boosting

Variants: XGBoost, Light GBM, CatBoost
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Neural Networks: Feedforward Architecture

Basic Structure: Composition of nonlinear transformations

Hidden Layer: h(") = g (W(T)Z + b(1)>

Output: 7 = w (out) p(L) + plout)

Activation Functions:
ReLU: g(x) = max(0, x) — most popular

Creates piecewise-linear, highly flexible functions

Regularization:
Dropout: Randomly drop neurons (sets to zero) during training
L2 penalty: Penalize large weights

Early stopping: Stop when validation error increases

28/82



X

N
Said §
Business
School

Neural Networks in Asset Pricing
Direct Return Prediction (Gu et al., 2020):
Architecture: 1-5 hidden layers, 2-32 neurons each
Out-of-sample R? ~ 0.40% monthly (NN3, top performer)
Captures nonlinear effects and interactions

SDF Estimation (Chen et al., 2024b):

Three-network system:
LSTM (Long Short-Term Memory): Extracts hidden states from macro time series
Feedforward NN: Estimates SDF weights w from firm characteristics + macro states
GAN (Generative Adversarial Network): Adversarially constructs optimal test assets
(maximizes pricing errors)

Performance (annual, out-of-sample):
Sharpe ratio: 2.6 GAN (vs. 1.5 FFN, 0.8 FF5)
Explained variation of individual stock returns: 8% (2x benchmarks)
Cross-sectional R%: 23%

Key innovation: No-arbitrage condition as criterion function; adversarial

approach based on Hansen & Jagannathan (1997) minimax objective
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Standard Autoencoder: Encoder (compress) + Decoder (reconstruct)

Conditional Autoencoder for Asset Pricing (Gu et al., 2021):

Fit41 = 51(Zi,t)/ft+1 + €it+1

where f3j(zj ;) = NeuralNet(z; ;) (nonlinear in characteristics)

Key Results (Out-of-Sample):
Managed portfolios: Total R> = 92% (IPCA, 3 factors) vs. 70% (FF 3-factor)
Individual stocks: Total R> = 14% (CAT1, 6 factors) vs. 3% (FF 3-factor)
Predictive R?: 0.58% (CA2) vs. negative for FF models
Sharpe ratio: 2.63 (CA2 equal-weighted) vs. -0.40 (FF)

Economic Insight: Most return predictability from characteristics works through
time-varying nonlinear betas, not alpha
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Transformers and Attention Mechanisms

Motivation: Traditional models treat assets independently. But returns are
interdependent (co-movement, contagion, spillovers)

Self-Attention: Each asset “attends to” other relevant assets

exp(Q/K;/V/d)
>k eXP(Q,{Kk/\/a)

Attention score: a;; =

Transformer-Based SDF (Kelly et al., 2025):
Cross-asset information sharing via attention
30% lower out-of-sample pricing errors than NNs

Attention weights reveal economic linkages

The Complexity Paradox: Millions of parameters, yet outperforms simpler models
out-of-sample
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The Factor Zoo Problem
The Challenge: 316 published return predictors (Harvey et al., 2016)
Multiple testing bias (false discoveries)
Publication bias (file drawer problem)
Data mining (p-hacking)
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ML Solutions:
1. Robust Testing (Feng et al., 2020):
Double-selection LASSO + Fama-MacBeth
Most new factors redundant after controlling for existing factors
2. Sparse SDF (Kozak et al., 2020):
Characteristics-sparse SDFs fail, but sparsity works in PC space (6-10 PCs)
3. Nonlinear Factor Models (Gu et al., 2021):
Characteristics predict returns via time-varying nonlinear factor loadings, not alpha
4. Asset Pricing Trees (Bryzgalova et al., 2025):
Tree-based algorithm to create optimal test assets

Captures high-dimensional interactions, better SDF spanning
32/82



Overfitting and Out-of-Sample Validation

Bias-Variance Trade-off:

Total Error = Bias? + Variance + Irreducible Error

Simple models: Low variance, high bias (underfitting)
Complex models: Low bias, high variance (overfitting)

Cross-Validation for Time Series:
Never use future data to predict past (look-ahead bias)
Expanding window: Training set grows over time
Validation: Tune hyperparameters on validation set
Test: Final evaluation on held-out test set

Regularization Techniques:
L1/L2 penalties, Dropout, Early stopping
Ensemble methods (bagging, boosting)
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Interpretability vs. Performance
The Spectrum:
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Method Interpretability  Performance Application
OLS High Low Research
LASSO High Variable selection
EBM High High Best of both worlds
Random Forest Low High Prediction
Deep NN Very Low High Max accuracy

Interpretability Techniques:
Feature importance (tree-based models)
Partial Dependence Plots (PDPs)
SHAP values (game-theoretic approach)
Explainable Boosting Machines (EBMs)
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Implementation Challenges

1. Data Quality:

Missing values, outliers, survivorship bias

Solution: Winsorization, tree-based methods (handle missingness)
2. Transaction Costs:

Paper profits # real profits

Must incorporate: Bid-ask spread, price impact, commissions
3. Model Decay:

Structural breaks, strategy crowding

Solution: Online learning, continuous monitoring
4. Risk Management:

Unintended factor exposures, concentration risk

Solution: Factor-neutral constraints, position limits
5. Regulatory Compliance:

Explainability requirements

Solution: Use interpretable models (EBM) or tools (SHAP)
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Generative Al in Asset Pricing

OXFORD

LLM Applications:
Predicting stock returns via sentiment (Lopez-Lira and Tang, 2023; Chen et al., 2022)
Textual factors (Cong et al., 2024)
Writing anomalies papers (Novy-Marx and Velikov, 2025)

Performance:

Mixed results: Some find good performance (Chen et al., 2022; Kelly et al., 2025),
others find miscalibration (Chen et al., 2024a)

Context-dependent: Works better for sentiment-driven moves

Challenges:
Hallucinations and errors
Look-ahead bias (Glasserman and Lin, 2023)

Model opacity and alignment issues
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Future Directions in ML for Asset Pricing

1. Causal Inference:
Move beyond prediction to causal understanding
Causal forests, double machine learning
2. Alternative Data:
Multimodal learning: Text + images + networks
Satellite imagery, social media, geospatial data
3. Improving Interpretability:
Better tools for understanding complex models
Hybrid models: Theory + ML flexibility
4. Real-Time Learning:
Online learning, continuous adaptation
Handle regime changes and structural breaks
5. Regulatory Frameworks:
Balance innovation with risk management
Audit mechanisms for algorithmic decisions
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Fixed Income (Bianchi et al., 2021):
Extreme trees and deep NNs outperform linear models for Treasury bonds
Group-ensembled NNs leverage economic priors (macro categories)
Nonlinearities within groups drive improved prediction

International Markets (Leippold et al., 2022):
Neural networks excel in Chinese equity markets
Return predictability stronger in China than US
ML profitable even through 2015 crash and COVID

Challenging Weak-Form EMH (Murray et al., 2024):

CNN-LSTM on 12-month returns: 1.08% monthly long-short return (Sharpe 0.78)
Robust in large caps and recent period

Driven by nonlinear interactions, distinct from momentum/reversal
Technical patterns contain alpha unexplained by risk, violating weak-form EMH
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Paper 1: Novy-Marx & Velikov (2024)

“Al-Powered (Finance) Scholarship”

Research Question:
Can LLMs automate academic research production from hypothesis to full paper?

What are implications for academic integrity and peer review?

Key Contributions:
Complete automation pipeline: Data mining — testing — paper writing
Industrial scale: 380 complete academic papers generated
Multiple theoretical frameworks: Same results, different “stories”

Cautionary tale: Demonstrates potential for HARKing industrialization
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Novy-Marx & Velikov: Methodology
Step 1: Signal Mining
30,000+ potential predictors from accounting data (COMPUSTAT)
Ratio and difference-type signals: X/Y, AX/lag(Y)

Step 2: Rigorous Filtering (“Assaying Anomalies” protocol)
30,000 candidates — 95 signals passing all criteria
Require: significant across decile/quintile sorts, VW/EW portfolios, FF6 alphas
Benchmark against 200+ documented anomalies

Step 3: Al Paper Generation (Claude Opus 4.1)
Signal naming: e.g., “Liquidity Leverage Intensity” (ACO/SEQ)
Four distinct theoretical frameworks per signal:
Unrestricted (general economic mechanisms)
Behavioral (slow diffusion of information)
Production-based asset pricing
Consumption-based asset pricing
Complete papers: intro, data, results, conclusion, references
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Novy-Marx & Velikov: Key Findings
Quality of Data-Mined Signals:

t-statistics distribution matches published anomalies
Equal-weighted: 87% overlap with published literature
Value-weighted: Shorter right tail but similar modes

Implication: Peer review may not distinguish mining from discovery

Quality of Al-Generated Content:
Readability (Flesch-Kincaid): 16—18 years (college graduate level)
Remarkably consistent across theoretical frameworks
Convincing prose with (occasionally hallucinated) citations
30 pages each: intro, methods, 8 figures, 5 tables

Efficiency:
Data mining + validation: ~1 day
380 complete papers generated: 12 hours
Cost: Minimal computational expense
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Novy-Marx & Velikov: Implications

Existential Threats:

Peer review: Could overwhelm journals (380 papers = very high review costs)
Citation gaming: Automated papers cite strategically, inflating metrics
Academic standards: Distinction between discovery and fabrication blurs

The Good:
Democratizes research production
Accelerates hypothesis testing
May speed market efficiency

Recommendations:
Full accountability: Authors responsible for all content (including Al-generated)
Enhanced validation: Citation verification, theoretical consistency checks
Out-of-sample emphasis: Focus on practical significance and novel predictions

Key Insight: Newton observed an apple, then theorized. Post-hoc theorizing is scientific

practice—but industrial-scale automation crosses a line.
42/82
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Paper 2: Gu, Kelly & Xiu (2020)

“Empirical Asset Pricing via Machine Learning” (Review of Financial Studies)

Data & Sample:
Universe: 30,000+ stocks (NYSE/AMEX/NASDAQ), 1957-2016

Predictors: 94 firm characteristics x (8 macro variables + 1) + 74 industry
dummies = 920 signals

Sample split: 18 years training (1957-1974), 12 years validation (1975-1986), 30
years out-of-sample testing (1987-2016)

Methods Compared:
Linear: OLS, Elastic Net
Dimension reduction: PCR, PLS
Trees: Random Forest (bagging), GBRT (boosting)
Neural Networks: NNT1-NN5 (1 to 5 hidden layers, ReLU + dropout)
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Gu et al.: Detailed Results
Out-of-Sample R? (Monthly Stock-Level):

Method All Stocks  Top 1,000 Bottom 1,000
OLS-3 0.16% 0.31% 0.17%
Elastic Net 0.11% 0.25% 0.20%
PCR 0.26% 0.06% 0.34%
PLS 0.27% -0.14% 0.42%
Random Forest 0.33% 0.63% 0.35%
GBRT 0.34% 0.52% 0.32%
NN1 0.33% 0.49% 0.38%
NN3 0.40% 0.70% 0.45%
NN5 0.36% 0.64% 0.42%

Key Patterns:
Nonlinear methods dominate: NN3 achieves 0.40% vs linear 0.11-0.27%
Large stocks: ML advantage much stronger (NN3: 0.70% vs OLS-3: 0.31%)
Optimal depth: NN3 peaks; NN4-5 show diminishing returns (overfitting)
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Gu et al.: Economic Significance
Portfolio Strategies:
Market Timing (S&P 500):

Buy-and-hold Sharpe ratio: 0.51
NN forecast Sharpe ratio: 0.77 (+51% improvement)

Long-Short Decile Spread (Value-Weighted):
OLS-3 strategy: SR = 0.61, Mean return = 0.94%/month
Neural Network (NN3): SR = 1.35, Mean return = 2.12%/month
SR improvement: +121% (more than doubling performance)
Turnover: 58% (OLS-3), 124% (NN3) monthly

Where Does ML Excel?
Large-cap stocks: ML advantage strongest (NN3: 0.70% vs OLS: 0.31%)
Portfolio-level predictions stronger than individual stocks

Captures complex interactions missed by linear models
45/82
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Gu et al.: Variable Importance & Nonlinearities

Top Predictor Categories (Consensus Across Methods):
Price trends: 12-month momentum, short-term reversal (1-month), industry
momentum, momentum change, max return, long-term reversal
Liquidity: Market cap, dollar volume, turnover, bid-ask spread, Amihud illiquidity,
zero trading days
Risk/Volatility: Total volatility, idiosyncratic volatility, market beta, beta squared
Valuation & Fundamentals: Earnings-to-price, sales-to-price, asset growth,
earnings increases

Key Nonlinear Effects & Interactions (NN3):
Size: Smaller stocks earn 2.4% more (median — 20th percentile)
Volatility: Higher vol stocks earn 3.0% less (median — 80th percentile)
Size X Momentum: Momentum works best for large stocks
Size x Reversal: Linear for small stocks, concave for large stocks

Linear models miss these patterns (prefer zero coefficients)
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Gu et al.: Theoretical Interpretation & Limitations

What ML Achieves:
Measures conditional expected returns: E;[r; 111]z;¢]
Leverages regularization (penalization, validation, ensembles) to avoid overfit
Captures nonlinear interactions among 100+ predictors
Combines all sources: systematic risk + idiosyncratic risk + potential mispricing

Key Findings:
Trees & NNs dominate: Allow complex predictor interactions
Shallow beats deep: NN3 optimal; NN4-5 overfit (low signal-to-noise in finance)
Best for large/liquid stocks: Portfolio predictions stronger than individual stocks

Limitations:
Complexity: Models are “black boxes”—inspectable but opaque
Data intensive: Requires long time series, many stocks, quality data
Interpretation: Difficult to extract simple economic mechanisms

47/82



D

N
Said §
Business
School

Paper 3: Kelly et al. (2025)
“Artificial Intelligence Asset Pricing Models”

Research Question:

Can transformer architectures (from ChatGPT/LLMs) improve asset pricing by
enabling cross-asset information sharing?

Key Innovation: The AIPM (Al Pricing Model)
Embeds transformer in the stochastic discount factor (SDF)

Cross-asset attention mechanism: Asset i’s return prediction uses information
from all assets

Inspired by how words need context in language (“bank” = financial or river?)
Key Insight:
Traditional: Return(i) = f(Characteristics(i))
AIPM: Return(i) = f(All Assets’ Characteristics)
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SDF Representation: m; 1 = 1 — w(X;)'Ri1 where w(X;): conditional portfollo
weights; X;: N X D matrix of characteristics

Linear Portfolio Transformer: w; = A X, A = (X WX]) XA
Attention Matrix: A, = X; WX]

Measures similarity between assets
Dynamic, conditional on characteristics

Enables information sharing

Nonlinear Portfolio Transformer (K blocks):
Multi-head attention: A(Y) = 3/ o(YW,Y’) YV, (softmax for selectivity)

Feed-forward network: F(Y) = max[0, YW; + bi]W; + b, (nonlinear
transformations)

Residual connections: Skip connections for stability

Scaling: 1-10 blocks, up to 1 million parameters
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Kelly et al.: Empirical Setup & Results

Data:
Period: 1963-2022 (US stocks)
Characteristics: 132 from Jensen et al. (2023)
Training: 60-month rolling windows

Out-of-Sample Sharpe Ratios (1968-2022):

Model Sharpe Ratio  vs. FF6
FF6 1.05 Baseline
HXZ (g-factors) 1.80 +71%
BSV (132 linear factors) 3.60 +243%
DKKM (shallow NN) 3.91 +272%
Linear Attention 3.89 +270%
MLP (deep NN) 4.31 +310%
Transformer (10 blocks) 4.57 +335%

Key Finding: Attention adds 0.3-0.7 to Sharpe ratio over best NN
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Kelly et al.: Cross-Asset Information & Complexity

Principal Portfolios Analysis:
Symmetric component (own-asset effects): SR = 3.23
Anti-symmetric component (pure cross-prediction): SR = 3.10
Correlation between components: only 32%!
Interpretation: Cross-asset prediction captures industry spillovers, supply chains,
correlated fundamentals

The Virtue of Complexity:
Linear transformer (129 heads): SR = 3.89
Nonlinear transformer (10 blocks, ~1M params): SR = 4.57

No plateau yet! Performance still increasing with complexity

Size Effects:

Mega-cap stocks only: Linear SR = 1.05-1.18; Transformer SR = 1.84 (1.6-1.8x)
Attention crucial even for liquid stocks
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Kelly et al.: Theoretical Insights & Implications

Why Does Attention Work?
Noise reduction: Individual characteristics are noisy proxies of expected returns;
cross-sectional information sharing refines them
Cross-sectional dependence: Sufficient dependence among true expected returns
enables information borrowing across assets
Context-aware prediction: Like words in LLMs, asset returns understood
through surrounding asset context

Connection to Factor Timing:
Linear attention model is a high-dimensional factor timing representation
Optimizes timing of all factors jointly (vs. one-at-a-time in prior work)

Practical Implications:
OOS performance: Sharpe ratio increases from 3.8 (1 block) to 4.6 (10 blocks)
Virtue of complexity: Performance still improving at ~1M parameters

Information sharing: Cross-asset attention dominates own-asset models
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Paper 4: Bell, Kakhbod, Lettau & Nazemi (2024)

“Glass Box Machine Learning and Corporate Bond Returns”

Research Question:
Can we achieve SOTA ML performance while maintaining full interpretability?
What drives corporate bond returns? (nonlinear relationships, interactions)

The Dilemma:
Black box (RF, XGBoost, NN): High accuracy, zero interpretability
Glass box (OLS, LASSO): Interpretable, low accuracy

Solution: Explainable Boosting Machine (EBM)

N
e =B+ Zﬂ(xi,l,t) + Zﬂj(xi,l,h Xj,it) + et et
i=1 i>j
Additive structure: Each f; and f;; visualizable
Learned via gradient boosting on decision trees

Bootstrap for standard errors
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Bell et al.: Data & Performance

Dataset:
Period: July 2002-August 2020
Universe: 1,207 firms, 106,265 firm-months
Predictors (81 total): Firm-level (41) + Market-level (40)
Sample Split: Train (7/2002-6/2010), Valid (7/2010-6/2011), Test (7/2011-8/2020)

Out-of-Sample R? (Jul 2011-Aug 2020):

Model Training R>  Testing R?
OLS 31.2% -2.3%
LASSO 17.5% 8.0%
Random Forest 46.9% 13.3%
XGBoost 42.5% 12.0%
EBM 24.8% 12.1%

Key Insight: EBM achieves 100% of XGBoost accuracy with full interpretability.
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Bell et al.: Most Important Predictors

Top 5 Variables (by Mean Absolute Score):
AUNCT (Financial Uncertainty Change): Most important
AUNC (Macro Uncertainty Change): Jurado et al. (2015) measure
TERM (Term Structure Factor): Long-short Treasury spread
LTREVB (Long-term Reversal): Bond-specific factor
spread (Bond Yield Spread): Over Treasury curve

Key Pattern: Changes in uncertainty matter more than levels.
Correlation(AUNCT, ryy1) = -0.50 (t-stat = -8.93)
Correlation(UNCfy, rr41) = -0.06 (insignificant)

Interpretation: Markets react to changes in uncertainty, not levels. Large
increases/decreases in financial uncertainty predict significant bond return movements.
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Bell et al.: Nonlinear Shape Functions

1. Financial Uncertainty (AUNCf):
Monotonic negative, nonlinear effect on bond returns
Large increases: —66 bps; Large decreases: +64 bps

Rising uncertainty lowers returns, falling uncertainty boosts returns

2. Term Structure (TERM):
Highly asymmetric: Large positive TERM — +100 bps effect
No corresponding negative effect for low TERM values
Right tail only—captures flight-to-quality and duration effects

3. Macro Uncertainty (AUNC):
Step function: Negligible for most values
Large negative effects only at extreme increases (right tail)
Asymmetric: Market reacts more to rising than falling uncertainty
Triggered during 2008 financial crisis and 2020 COVID
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Bell et al.: Interaction Effects

Most Important: AUNCS X spread

Pattern Discovered:
High-spread bonds super-sensitive to uncertainty changes
Uncertainty falls: Low-spread bonds gain little, high-spread bonds gain much larger
Asymmetric: Falling uncertainty effect > Rising uncertainty effect

Represents outsized price recovery for risky bonds as uncertainty diminishes

Economic Story:

Risk-on/risk-off dynamics: High-spread bonds sold first in stress, bought first in
recovery
Credit risk amplification and flight-to-quality reversal

Also Important: AUNCS x sprxrtg (spread X rating)
Low-grade high-spread bonds benefit most from falling uncertainty

Similar asymmetric pattern with disproportionate gains

57/82



D

N
Said §
Business
School

Bell et al.: Portfolio Performance & Implications

Long-Short Portfolio (Based on EBM Predictions):
Mean return: 8.04% annually (0.67% monthly)
Sharpe ratio: 0.38 monthly (1.32 annualized)
Monotonic pattern across deciles

EBM-pos Strategy (Market Timing):
If E[r] < 0: Invest in risk-free rate instead
Avoids downturns (2008 crisis, 2020 COVID)

Glass Box Advantages:
Exact shapes: See nonlinearities, asymmetries, thresholds
Interactions: Which variables interact, how, and when
Heterogeneity: Different firms respond differently
Regulatory compliance: Fully explainable
Strategy design: Target effects (e.g., high-yield bonds when AUNCf<0)

Key Takeaway: EBM matches XGBoost performance with full interpretability
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