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Abstract

Designing effective prompts is challenging when seeking advice from large lan-
guage models (LLMs) on tasks involving users’ soft traits. We introduce preference
uncertainty—capturing soft information—into a cheap talk framework (Crawford and
Sobel, 1982) and model soft information communication with AI as the investor’s opti-
mal stopping problem with Brownian information flow, which we solve in closed form.
Although LLMs are not subject to misaligned incentives, soft information communica-
tion is inefficient due to inevitable losses from digitization and LLMs’ limited memory.
The model predicts that an investor generally prefers LLMs trained to be more “opin-
ionated” than her own prior, except when she is most confused and prefers an aligned
and equally confused LLM. We validate model predictions through LLM-driven sim-
ulations: investor profiles are simulated based on the Survey of Consumer Finances,
and multi-round LLM advising simulations, benchmarked against standard portfolio
questionnaires, confirm our theoretical predictions.
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1 Introduction

The proliferation of artificial intelligence (AI) in advisory roles—spanning financial plan-
ning, healthcare, and education—has created a compelling paradox in professional services.
While AI advisors demonstrate objective advantages including elimination of conflicts of in-
terest, scalable delivery, and performance comparable to human professionals, their market
penetration remains surprisingly limited. In financial markets, the paradox is especially pro-
nounced: although robo-advisors create portfolios with historical returns comparable to those
of professional benchmarks (Fieberg et al., 2024) and assist seasoned investors in minimizing
behavioral errors (Guo et al., 2022), they account for less than 2% of global assets under man-
agement as of 2025 and are expected to experience modest growth in the near future.1 This
limited adoption occurs even as traditional human advisors face well-documented incentive
problems—commission-driven recommendations, product pushing, and strategic exploita-
tion of client biases (Bolton et al., 2007; Carlin and Manso, 2011; Chalmers and Reuter,
2020). The persistence of potentially biased human advisors over unbiased AI alternatives
suggests that current AI systems cannot replicate crucial aspects of human advisory value.

This missing value lies in the processing of “soft information”—the subjective, often
unarticulated preferences, constraints, and goals that clients themselves may not effectively
communicate or even fully understand themselves (Liberti and Petersen, 2019). Unlike pre-
diction tasks involving external outcomes such as asset returns, advisory excellence requires
understanding the individual client’s internal landscape of uncertainty. A human advisor
can navigate this uncertainty through extended dialogue, using probing questions, analogies,
and examples to help clients communicate their own preferences. However, large language
models (LLMs) face fundamental architectural constraints that create a novel form of infor-
mation loss distinct from the strategic distortions in human advising. When clients cannot
articulate their needs through effective prompts, and when LLMs’ limited memory prevents
synthesis across extended conversations, the result is generic recommendations that overlook
the nuanced requirements underlying high-stakes decisions.

This paper develops a formal framework for AI-based advising via LLMs, and validates
model predictions through LLM-driven simulations that generate multi-turn, role-structured
conversations. Alongside standard fundamental uncertainty in financial advising, we intro-
duce “preference uncertainty” to capture soft information, and model the communication
of soft information as the investor’s optimal stopping problem with Brownian information
flow. The comparison between human versus LLM-based advisors is clear. Human advisors
efficiently elicit soft information, but their misaligned incentives lead to strategic misreport-

1See analysis in https://resoinsights.com/insight/robo-advisors-in-wealth-management/
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ing and information loss about asset fundamentals as in the standard cheap talk models
(Crawford and Sobel, 1982). By contrast, LLM-based advisors are unbiased, yet we identify
a novel source of information loss stemming from the frictions inherent in digitizing soft
information.

In the model, the investor has a quadratic loss utility function and faces two layers of
uncertainty. The first—uncertainty about the fundamental state of the world—is standard
in the financial advising literature. The second, which is novel in this paper, is uncertainty
about the investor’s own objective, which we call “preference uncertainty,” and it captures
soft information. Specifically, the investor does not know which of the fundamental state to
match (preference uncertainty); for either potential states, she does not observe its realization
(fundamental uncertainty). Hence, the investor herself is “confused”: she does not fully
know her preferences ex ante and can learn them through consultation with an advisor. For
example, while she may know her income status and lifetime goals, she lacks knowledge of
personal finance and is unaware how such information is related to her investment objectives.

We include the case of consulting a human advisor for comparison. Human advisors can
uncover soft information through interactive dialogue—using probing questions, analogies
and examples to help clients communicate their own preferences. In our model, the “pref-
erence uncertainty” is eliminated with a human advisor: after an initial consultation, the
investor learns her preference and is matched with a specialist tailored to her investment
goals. However, the human advisor is biased—e.g., toward generating commission fees—and
thus inflates the value of asset fundamentals. As in standard cheap talk models(Crawford
and Sobel, 1982), this strategic distortion limits how much credible information the advisor
can transmit, resulting in information loss about fundamental values.

In contrast, the LLM advisor is biased, but digitizing soft information is difficult due to
two reasons. First, by its nature, digitization inevitably incurs information loss—a challenge
that is amplified when the investor herself is uncertain. Second, the limited memory of LLMs
prevents synthesis across extended conversations, even though each individual prompt is
informative. The Transformer architecture underlying most LLMs scales quadratically with
input length—which is the cost of LLMs’ intelligence, but makes long-context processing
computationally costly and often impractical. As a result, LLMs typically operate within
short, stateless context windows, with knowledge reset after each interaction.

We model the communication with the LLM as the investor’s optimal stopping problem
with Brownian information flow. Before seeking a recommendation (stopping), the investor
discusses her situation, generating public signals about her underlying preferences that she
also comes to learn. The LLM, however, only partially learns about these preferences due
to its limited memory. In the baseline case, we assume the LLM has one-shot memory and
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updates its belief using only the most recent signal, which, in the the continuous-time limit,
its belief remains fixed at the pretrained prior. We also consider an extension in which
the LLM randomly misses each signal. The investor decides when to stop the conversation
and seek recommendation, weighing the informational value of continued learning against
information costs.

When the investor stops communication, she receives a recommendation from the LLM.
Aware that it reflects the LLM’s belief, she chooses an action based on her own posterior
belief, partially correcting for the LLM’s misunderstanding. The investor’s stopping value
depends on both the residual preference uncertainty and the residual fundamental uncer-
tainty. Because of communication costs and the LLM’s limited memory, soft information is
never fully transmitted. Moreover, although the LLM is unbiased, fundamental uncertainty
remains due to unresolved preference uncertainty. Uncertain about the client’s preferences,
the LLM generates recommendations for an average client through a black-box process that
offers little transparency about the underlying states. This output serves only as a noisy
signal of the investor’s preferred fundamental state. Taken together, when consulting an
LLM, information loss also arises essentially from the inefficiency in communicating soft
information.

We solve the investor’s optimal communication policy in closed form for the baseline
model. In equilibrium, the investor follows a threshold strategy: she continues interacting
with the LLM while her belief about her preference remains within an intermediate range
and stops once she becomes sufficiently confident—either above an upper threshold or below
a lower one. This policy reflects a trade-off between the benefit of continued learning about
her own objective and information costs.

A central implication of the model is that the optimal LLM for an investor is generally
not the one that simply mirrors her prior beliefs, but one that is deliberately more “opinion-
ated” in the same direction. Although an aligned LLM minimizes the perceived noise in its
recommendations, the investor also benefits from the conversation itself: interacting with a
more opinionated assistant elicits a richer exchange that resolves more uncertainty about her
underlying needs. For extreme priors—where she immediately seeks a recommendation—she
always prefers an aligned LLM that shares her belief. For intermediate priors, the option
value of learning tilts her preference toward a more “opinionated” LLM that leans in the
direction of her prior. One exception is when she is most confused with a prior of 0.5, where
she optimally prefers the LLM to be aligned and equally “confused.”

We derive a set of testable implications that connect the model’s primitives to observable
advising behavior and outcomes. For clarity, we organize hypotheses into two groups: those
we can evaluate in controlled LLM-based simulations and those that require observational
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field data. In the paper, we focus on four simulation-testable hypotheses. H1 posits that the
primary value of interacting with an LLM advisor is that investors learn about their own
initially uncertain preferences; the LLM’s recommendation may remain generic, but dialogue
helps investors reduce "preference uncertainty" and choose portfolios closer to their true
objectives. H2 predicts that higher time costs induce earlier termination of the conversation,
yielding less tailored portfolios. H3 predicts that giving the LLM persistent access to memory
improves recommendation quality and narrows the gap with a human advisor. H4 tests the
model’s prediction about optimal AI training: investors benefit from opinionated advisors
whose recommendations are more extreme than their own prior beliefs, rather than merely
aligned advisors.

We complement the theory with prompt-based LLM simulations that generate multi-
turn, role-structured conversations approximating real-world advisory exchanges. Investor
“ground truth” comes from the 11-question Investor Questionnaire provided by Vanguard; we
simulate n = 500 profiles (fixed seed), obtain each profile’s rule-based “optimal” stock/bond
allocation, and use these as benchmarks in evaluation. The advisor is implemented with
OpenAI’s GPT-5 under strict prompting. We compare a memoryless advisor, which is fed
only the most recent Q&A and thus approximates fixed priors due to context-length lim-
its, with a memory-augmented advisor that can use full chat history, and a full-information
counterfactual that observes the complete profile. Conversations conclude according to an
optimal stopping rule, modeled as a 0.10 exogenous probability of termination per round.
The investor assesses the costs and benefits in each round and may choose to end the con-
versation early, with a maximum of eleven questions permitted.

Our findings, drawn from 2,500 conversations (500 profiles each undergoing 5 interac-
tions), reveal several key patterns. First, supporting H1, it’s clear that the act of interacting
itself leads to most of the observed improvements: accuracy rises by 14.1 percentage points
even before any specific recommendations, and by 15.7 points afterward. Each additional
round of exchange adds about 1.03 points to accuracy, while every extra word contributes
roughly 0.017 points. Second, in line with H2, we find that ending conversations prema-
turely—outside the advisor’s control—reduces accuracy by around 2.62 points. Even when
accounting for total rounds, this drop remains substantial at about 0.96 points, indicating
a real penalty for impatience. Third, as H3 predicts, access to memory significantly boosts
recommendation quality: the system works best when it has full access to information, per-
forms next best with full memory, and does worst with no memory at all. Fourth, using
a focused subsample of 50 profiles from the tails of the allocation distribution with 30,250
observations, we confirm H4: the empirical optimal advisor recommendation curve quali-
tatively matches the theoretical prediction, with investors benefiting from advisors whose
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recommendations are more extreme than their own prior beliefs.
Methodologically, this paper introduces an innovative approach to testing economic the-

ory by complementing our analytical framework with prompt-based LLM simulations. This
technique allows us to generate dynamic, multi-turn conversations that approximate real-
world advisory exchanges, bridging the critical gap between theoretical rigor and empirical
realism. Unlike traditional laboratory experiments or analytical models, these simulations
enable the direct observation of complex mechanisms, such as information acquisition, belief
updating, and optimal stopping, as they unfold within a controlled yet realistic interactive
setting. Although recent literature has begun to explore the potential of using LLMs as
economic agents to study behavioral patterns and simulate empirical regularities in human
decision-making (Horton, 2023; Ouyang et al., 2024), our paper is among the first to lever-
age LLM-driven simulations explicitly as a tool for testing new economic theories. This
distinguishes our approach from recent work that uses LLMs to replicate known behav-
ioral regularities or to simulate agents in strategic games (Anand et al., 2025; Lopez-Lira,
2025). Our two-sided LLM framework, where both the advisor and investor are simulated,
enables us to test novel theoretical predictions about soft information transmission and op-
timal stopping that would be difficult to examine in traditional laboratory settings. This
approach opens new possibilities for economic research in domains where communication
and context-dependent human behavior play a central role, offering a promising path for
validating theoretical predictions.

Literature. This paper contributes to two rising strands of research: Artificial intelli-
gence in financial advising, and the technology trend that transforms soft information into
hard data. More broadly, theoretical research on AI technologies has primarily focused on
their effects on labor (e.g., Ide and Talamas, 2024), while this paper examines their specific
application in providing information within advisory roles.2

AI Advising. We build on classic cheap talk and financial advising models and introduce
preference uncertainty to capture soft information. We highlight the key features of AI
advisors by comparing them with human advisors, who are misaligned à la the classic cheap
talk (Crawford and Sobel, 1982). This seminal framework is later applied to analyst settings
where reputational and underwriting incentives drive distorted advice—see Bénabou and
Laroque, 1992; Ottaviani and Sørensen, 2006; Rüdiger and Vigier, 2019.3 Our paper explores
AI advisors as a new alternative and identifies their limitations: while unbiased, AI systems

2Theoretical research on AI in finance is still emerging. For example, Chen and Han (2024) show super-
vised AI intensifies agency conflicts.

3Cheap talk is also applied in corporate-governance settings where boards or proxy advisors offer non-
binding recommendations (e.g., Levit and Malenko, 2011; Malenko and Malenko, 2019).
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face challenges in interpreting soft, contextual information.
Our findings contribute to the growing literature on financial technology and AI-driven

advisory services, extending the review by Mo and Ouyang (2025). Prior work shows that
robo-advisors can improve investor outcomes: D’Acunto et al. (2019) find better diversifi-
cation and reduced behavioral biases, while Rossi and Utkus (2024) report improved index-
ing, Sharpe ratios, and lower fees, especially for under-diversified investors. Yet challenges
remain. Chak et al. (2022) show that even when robo-advice enhances debt choices, low al-
gorithmic trust can limit uptake. Similarly, Andries et al. (2024) find that human advisors’
effectiveness varies with available information. Recent LLM advances offer new potential:
Lu et al. (2023) and Fieberg et al. (2024) show LLMs can generate effective, personalized
investment advice. Field evidence from Guo et al. (2022) finds experienced, risk-averse in-
vestors benefit most from conversational AI advisors. Building on this, our paper develops
a theoretical model of AI vs. human advising, validated through prompt-based simulations
where an LLM engages in iterative dialogue with an investor who chooses when to stop.

This raises the question of whether human experts still offer distinct value in an era
of automation. While robo-advisors excel at technical tasks, human advisors provide com-
plementary “soft” services like emotional support and trust-building, which aid prudent
decision-making (Linnainmaa et al., 2018; Gennaioli et al., 2015). Human discretion re-
mains valuable: Costello et al. (2020) show it improves outcomes by incorporating private
context, and Greig et al. (2024) find that hybrid platforms enhance investor retention and
confidence. Similarly, Cao et al. (2024) find that while AI excels in forecasts, humans out-
perform in tasks needing institutional insight, with combined approaches performing best in
uncertain, data-scarce settings. Our findings reinforce that human advisors play a comple-
mentary role, especially where nuance, context, and trust matter.

Hardening soft information. Our paper is related to the literature of soft versus hard infor-
mation, as well as the rise of Big Data and machine learning technologies that transform soft,
subjective information into hard, objective data. The literature on soft vs. hard information
(e.g., Stein, 2002; Liberti and Petersen, 2019) emphasizes that hard information is verifiable
and thus transferable within organizations, while soft information is often non-verifiable and
modeled as cheap talk (e.g., Bertomeu and Marinovic, 2016; Corrao, 2023). Recent advances
in Big Data and AI have made it possible to digitize even contextual, traditionally soft in-
formation. He et al. (2024) examines this technology trend in the context of credit market
competition. In our paper, investor communication with the LLM is exactly the process that
hardens a fraction of the soft information. However, we emphasize that LLMs face memory
constraints that limit their ability to fully process and transform soft information.

The remainder of the paper proceeds as follows. Section 2 introduces the model. Section
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3 characterizes equilibrium under human advising and the equilibrium under AI advising
separately. Section 4 presents our empirical analysis. Section 5 concludes and discusses
practical and policy implications as well as avenues for future research.

2 The Model

A decision maker seeks advice from a better informed advisor—either a human or an AI
advisor (large language model, or LLM)—before taking action. To fix ideas, we use the
context of financial advising throughout the paper and refer to the decision maker as the
“investor.” However, the model applies to a broad range of advisory applications.

2.1 Agents

We first introduce the agents’ objectives and decision making given their information. The
investor’s dynamic communication with the LLM will be separately introduced in Section
2.2.

2.1.1 Investor

We build on the cheap talk framework (Crawford and Sobel, 1982) to characterize the advi-
sory problem. Our key innovation is to model the quality of prompts for AI, which becomes
critical when the task involves investors’ soft traits and effective advising requires the com-
munication of soft information.

Specifically, in addition to the standard uncertainty about the realization of states, we
introduce a second layer of uncertainty about the investor’s optimization problem to capture
soft information, which we refer to as “preference uncertainty.” To characterize this friction in
the simplest possible way, we assume that the investor has a quadratic loss utility function
and chooses an action a to match the realization of a fundamental state. However, it is
uncertain which fundamental—either θ̃1 or θ̃0—is the relevant target. That is, the investor’s
objective function is either

−E(a − θ̃1)2,

or
−E(a − θ̃0)2.

We introduce ω ∈ {1, 0} to refer to the investor’s underlying preference: ω = 1 for θ̃1 and
ω = 0 for θ̃0. We interpret preference uncertainty as soft information, and refer to the two
terms interchangeably in the paper.
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We assume that ω is unobservable to all agents, including the investor, and can be
learned only through communication conveying the investor’s soft traits. In the baseline
financial advising example, although the investor understands her own circumstances—such
as income and tax status, years until retirement, and general risk attitudes in daily life—she
does not know how to formulate the investment problem or how these characteristics map
into ω, for example into equity (θ̃1) versus fixed income (θ̃0) investment. More broadly, this
setting captures situations in which inexperienced decision makers face complex, personalized
choices, such as selecting medical insurance or self-diagnosing medical conditions.

As we discuss below, only human interactions fully elicit soft information ω. By contrast,
when interacting with an LLM, soft information must be digitized into prompts, which
inevitably entails information loss, and the LLM’s limited memory further prevents synthesis
across extended exchanges.

As standard in the literature, the realizations of θ̃1 and θ̃0, denoted by θ1 and θ0, are
unobservable to the investor but observable to the advisors. Throughout the paper, we use
θ̃i to denote random variables and θi to denote their realizations. We refer to uncertainty
about θ1 and θ0 as fundamental uncertainty, to distinguish it from preference uncertainty,
which concerns ω. We assume that θ̃1 and θ̃0 are independent normal random variables,

θ̃1 ∼ N(µ1, σ2
ϵ ), θ̃0 ∼ N(µ0, σ2

ϵ ),

where µi is the mean and σ2
ϵ is the variance of θ̃i for i ∈ {1, 0}.

We introduce p ∈ [0, 1] as the investor’s belief about her preference:

p ≡ Pi(ω = 1). (1)

Then, the investor’s utility is

U(a, p, θ1, θ0) = −p (a − θ1)2 − (1 − p) (a − θ0)2 . (2)

We assume that, prior to making a decision, the investor seeks advice from either a human
advisor or an LLM. We do not explicitly analyze the investor’s optimal choice of her advisor.
The paper focuses on AI advising, while the case of a human advisor is discussed briefly for
comparison and to sheds light on contexts where each advisor may be better suited.

2.1.2 Human advisor

A human advisor can efficiently collect soft information ω through human interactions (Lib-
erti and Petersen, 2019), but has misaligned incentives (Crawford and Sobel, 1982).
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Formally, when the investor consults a human advisor, a public signal is generated that
perfectly reveals the investor’s preference ω. As explained, the investor possesses preference-
related information (e.g., career status and risk appetite) but does not know how it maps
into ω. The human advisor understands this mapping and elicits the relevant information
through interaction—by interpreting tone, facial expressions, and body languages; ask tar-
geted follow-up questions; reframing choices using familiar analogies; and iteratively help
the client clarify her preferences when she herself is uncertain how to express them—thereby
uncovering ω. As a result, preference uncertainty is eliminated, and both parties know the
target fundamental asset is θ̃ω.

Once ω is revealed, the advising problem with a human advisor reduces to a classic cheap
talk framework à la Crawford and Sobel (1982). The advisor is biased by b > 0, with utility
function

Uh(a, θω) = −(a − (θω + b))2. (3)

The bias captures commission-based incentives that tilt the advisor toward recommending
greater investment. As a result, the advisor’s preferred action is θω + b, which exceeds the
asset’s fundamental value θω.

This formulation rules out strategic communication by the advisor about the investor’s
preference ω in order to induce a preferred action. We impose this restriction for simplic-
ity, as the paper’s primary focus is on AI advising, with the human advisor serving as a
benchmark for comparison. The assumption is also consistent with industry practice: an
initial consultation is used to elicit preferences and assign the investor to a specialist within
the advisory firm—one skilled at θ̃1 or θ̃0. Because these specialists are distinct individuals,
there is no scope for strategic communication about ω.

The consultation proceeds as follows. The human advisor perfectly observes the realized
fundamental asset value θω and then sends an unverifiable recommendation mh (with the
superscript “h” denoting “human”).4 Upon receiving mh, the investor updates her beliefs
and chooses an action a(mh) to maximize her expected payoff as defined in Eq. (2),

max
a

E[U(a, ω, θω)|mh] = −E[(a − θ̃ω)2|mh], (4)

where the investor’s preference ω has been revealed. The invest’s action in turn determines
the advisor’s payoff in (3).

4In practice, recommendations could be partially verifiable due to fiduciary duties or ex post scrutiny.
As long as misreporting is not always detected and penalties do not increase with the magnitude of the lie
(Kartik, 2009), the key logic of Crawford and Sobel (1982) applies.
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2.1.3 LLM

Seeking advice from large language models (LLMs) is convenient and represents a central
aspect of AI use. For example, nearly half of ChatGPT usage involves practical guidance or
seeking information (Chatterji et al., 2025).

Unlike human advisors, LLMs are not biased: they are trained to minimize prediction
errors, and any developer objectives beyond this—such as boosting subscriptions—are likely
orthogonal to recommendation bias in specific applications. However, successful AI advising
relies on effective prompts, which are challenging when investors’ soft traits are involved.
The communication of soft information ω with AI is subject to two frictions.

First, by its nature, digitizing soft information inevitably incurs information loss (Liberti
and Petersen, 2019). This problem is exacerbated when the investor is a non-expert who
struggles to formulate portfolio decisions: she may not know which information is relevant
to provide, and the inclusion of irrelevant or misleading details can degrade the quality of
interaction, resulting in a “garbage in, garbage out” outcome.

Second, the short memory of LLMs prevents synthesis over extended interactions: op-
erating with limited, largely stateless context windows, LLMs cannot reliably aggregate all
relevant information across prompts to uncover soft information.5 This limitation arises
because the Transformer architecture underlying most LLMs scales quadratically with in-
put length, making long-context processing computationally costly and often impractical.
The issue is particularly acute for advising tasks involving soft traits: in repeated portfolio
adjustments, including extensive chat histories to remind the AI of investor preferences can
substantially degrade performance (Liu et al., 2023), while emerging agentic memory systems
rely on coarse summarization and remain far from the nuanced, persistent memory humans
use to recollect clients’ subtle preferences.

In Section 2.2 below, we model the communication with the LLM as the investor’s optimal
stopping problem with Brownian information flow about soft information ω. Now we describe
what happens when the investor seeks recommendation from the LLM at any given pair
beliefs of herself and the LLM’s—both are endogenously determined by the communication
process in Section 2.2. Let p̂ ≡ PL(ω = 1) ∈ [0, 1] denote the LLM’s belief, and p̂ is public
information: the investor observes the LLM advisor’s pretrained prior p̂0 and its belief update
in the communication. However, the investor’s belief p is not observed by the LLM advisor.

5Each response is newly generated based solely on the current context, without incorporating any algo-
rithmic memory of previous responses. Certain LLMs such as ChatGPT may include prior texts into the
working memory, creating the impression of memory.
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Since the LLM is unbiased, its payoff UL is its conjectured investor’s payoff under belief p̂:

UL(a, p̂, θ1, θ0) = U(a, p̂, θ1, θ0) = −p̂ (a − θ1)2 − (1 − p̂) (a − θ0)2 . (5)

The LLM perfectly observes the realization of fundamental states, θ1 and θ0. Then, when
the investor seeks recommendation for her action, the LLM sends

mL = p̂θ1 + (1 − p̂)θ0. (6)

The investor understands that mL is determined in Eq. (6) under the LLM’s belief p̂, but
does not observe the fundamental realizations θ1 and θ0. She then chooses her optimal action
a(mL, p̂) to maximize her expected utility, under her belief that ω = 1 with probability p:

g(p, p̂|mL) ≡ max
a

E[U(a, p, θ1, θ0)| mL, p̂] = −pE[(a − θ1)2|mL, p̂] − (1 − p)E[(a − θ0)2|mL, p̂].
(7)

Let a∗(mL, p̂) denote the optimal action and we denote the resulting value as g(p, p̂|mL) .
Then, given any pair of the investor’s belief p and the LLM’s belief p̂, the investor’s expected
utility when she seeks recommendation is:

g(p, p̂) ≡ E[g(p, p̂|mL)] = E[U(a∗(mL, p̂), p, θ1, θ0)]. (8)

As will be introduced later, the investor seeks recommendation when the communication
stops. Hence, Eq. (8) captures the investor’s stopping value at any pair of beliefs p and p̂ in
the communication to be introduced next in Section 2.2.

Remark 1. The message space of the LLM is restricted to be a single recommendation
mL. When p̂ ∈ (0, 1), fundamental uncertainty remains regarding the realization of θ̃ω. We
argue that the LLM cannot return both underlying fundamentals, θ1 and θ0, which aligns
with the black-box nature of AI outputs. Note that our simple two-state structure serves
as an abstraction of the complex underlying algorithms. Even if the LLM were to provide
intermediate reasoning steps, a typical customer would be unable to infer θ1 and θ0 in a
meaningful way.

2.2 Communication with the LLM

The investor may initiate multiple rounds of conversations with the LLM to discuss about
her needs, which gradually reveals information about ω. The investor and the LLM holds
a prior belief of p0 and p̂0 that ω = 1. The communication is in continuous time, starting
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at t = 0 with an infinite horizon, and each round of chat lasts time dt. The investor is
impatient: with a Poisson shock of intensity λ, the communication ends and she receives a
recommendation immediately.

At every time t, the investor incurs a cost of cdt > 0 if she continues the communication
during the interval [t, t + dt). Whenever the communication stops—either by the investor
voluntarily or by an exogenous Poisson event, the investor seeks recommendation from the
LLM and the game stops. Suppose at time t, the game has not yet stopped exogenously,
and investor stops the communication to seek recommendation. The payoff to the investor
is then

−ct + g(pt, p̂t).

In addition, signals about the investor’s preference ω is gradually revealed to both
parties—as we discuss below.

Signals about the soft information ω. Signals about the principal’s true preference ω

(ω = 1 for matching θ̃1 or ω = 0 for θ̃0) is revealed by a sequence of signals modeled as a
Brownian diffusion process with drift ω. Specifically, the signal process evolves according to

dst = ωdt + σdBt, (9)

where B = {Bt, Ft, 0 ≤ t ≤ ∞} is standard Brownian motion on the canonical probability
space. The signal dst in (9) is more informative if σ is small. At each time t, the entire
history of signals, {sτ , 0 ≤ τ ≤ t}, is publicly observable. However, as will be discussed later,
the LLM learns from the signals partially due to its short memory.

2.2.1 Belief updating

Investor’s belief p. At every time t, the investor’s belief that ω = 1, pt, is conditioned on
the history of past communication, or the filtration F s

t generated from {sτ , 0 ≤ τ ≤ t}. Let
fω

t denote the density of st conditional on ω, which is normally distributed with mean ωt

and variance σ2t, i.e., st ∼ N(θt, σ2t). The investor’s posterior belief pt satisfies the Bayes
rule

pt = p0f
1
t (st)

p0f 1
t (st) + (1 − p0) f 0

t (st)
. (10)

The log-likelihood ratio zt ≡ pt

1−pt
evolves according to a simple process, with which we derive

the evolvement of the investor’s belief process p. Taking the log-likelihood ratio of (10):

zt = z0 + ln f 1 (st)
f 0 (st)

= z0 + 1
σ2 (st − t

2), (11)
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and thus
dzt = 1

σ2

(
dst − 1

2dt
)

.

From the investor’s perspective, ω = 1 with probability pt and signal st is released according
to dst = ptdt + σdBt, where pt = ezt

1+ezt
. The evolvement of investor’s belief measured in

log-likelihood ratio is then

dzt = 1
σ2

(
ezt

1 + ezt
− 1

2

)
dt + 1

σ
dBt. (12)

Using Ito’s Lemma and zt(pt) = ln pt

1−pt
, we show that pt evolves according to the standard

binary state Brownian signal formula (for details, see Appendix A.1),

dpt = pt (1 − pt)
σ

dBt. (13)

There are a few thing worth noting. First, the belief process {pt} is a martingale without
a drift term, reflecting prior consistency—the expectation of posterior beliefs equals the
prior. Second, the term 1

σ
is the signal-to-noise ratio: the numerator equals the gap in drifts

when ω = 1 versus when ω = 0. Finally, the belief pt is absorbing at pt = 0 or 1: once the
investor becomes certain about her type, there is nothing further to learn.

LLM’s belief p̂: baseline. As discussed in Section 2.1.3, LLMs have a short memory. In
fact, their knowledge is reset after responding to each prompt, and they operate within short,
stateless context windows. Consistent with this technology constraint, our baseline model
assumes that the LLM advisor exhibits “one-shot memory”—that is, it updates its belief
solely based on signal dst− from the most recent round of communication. In Appendix A.1,
we use a standard Binomial approximation to show that, under the continuous-time setting,
this form of memory implies the LLM effectively never updates its belief beyond its prior p̂0:

p̂t = E[ω = 1|dst− ] = p̂0. (14)

Therefore, in the baseline, the LLM’s belief p̂t remains constant at p̂0, which we interpret as
its pre-trained belief—that is, the fraction of ω = 1 in the LLM’s customer base.

This baseline setting is not an oversimplification. Although the LLM’s belief remains
constant, it still meaningfully affects model implications because the pre-training can vary.
Moreover, in a discrete-time setting, the LLM can update its belief based on the most recent
signal, and the key economic insight remains qualitatively consistent with the continuous-
time model presented here.
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The baseline captures the following scenario in practice: users who are uncertain about
their needs and unable to articulate such soft information provide prompts that carry minimal
information to the LLM, which, given the last prompt, would then generate recommendations
based on a “typical” customer profile. Meanwhile, the user herself gradually learns about
her preference over time through the communication, as reflected in the evolution of pt.

LLM’s belief p̂: extension. We also consider the extension where the LLM can update
its belief based on the entire communication history, but only partially learns from the sig-
nals {st}. This case speaks to the future developments, as advances in AI could make the
technology constraint less binding (see Footnote 6 for emerging solutions.) Even under the
current technology, one straightforward way to augment the LLM’s memory is to feed the
entire chat history into subsequent prompts. Indeed, some LLMs internally incorporate pre-
vious interactions from the same chat session into the current context window—for example,
ChatGPT does so within a single chat.

However, the LLM’s performance degrades significantly when operating over a long con-
text. The Transformer architecture underlying most LLMs correlates every input token (in
the context window) with the whole universe of tokens, making long inputs computation-
ally intensive and less efficient. Empirical work have shown that, LLMs perform best when
key information appears at the beginning or end of the input (due to primacy and recency
effects), but performance degrades significantly when crucial information is placed in the
middle (Liu et al., 2023).

In the model, we assume that for signal dst in each round of interaction, with probability
κ ∈ [0, 1), the LLM “absorbs” this signal and uses it to update its belief p̂t; with probability
1 − κ, the LLM misses this signal and does not update its belief. We assume that the events
of missing the signal are independent across time.

We use the LLM’s log-likelihood ẑt = ln p̂t

1−p̂t
to discuss the evolvement of its belief.

Importantly, if the LLM misses the signal st, it is equivalent to case where it receives an
alternative signal s̃t whose noise is infinite. In this case, the change in ẑt, which takes the
same form of Eq. (12), is

dẑt = lim
σ̃→∞

1
σ̃2

(
ds̃t − 1

2dt
)

= 0.

In the other case, if the LLM absorbs this signal, the update in its belief should be the same
as that of the investor; that is, dẑt = dzt.

Therefore, when measured in log-likelihood ratio, the LLM’s belief update is exactly κ
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fraction of that of the investor,6

dẑt = κdzt. (15)

Or equivalently,
ẑt = ẑ0 +

∫ t

0
dẑs = ẑ0 + κ(zt − z0). (16)

Eq. (16) implies that the LLM’s belief is a function of the investor’s belief, p̂t(pt).
Note that this extension nests the baseline model when κ = 0: the LLM never learns from

the conversation, and its belief is fixed at prior q0. In the other extreme, κ = 1, the LLM
shares the same belief as the principal. In this extension, we assume that κ is sufficiently
small, so that the equilibrium shares the same as in the baseline model.

Remark 2. In our model, the investor’s belief pt is a sufficient statistics of past communi-
cation to her. However, she cannot summarize this belief into a prompt to elicit a recom-
mendation from the LLM. This limitation reflects the nature of soft information: while the
investor understands pt in her thoughts, she is unable to articulate it clearly in her prompt.
Moreover, if she were able to partially convey pt to the LLM, the setting would closely
resemble our extension in which the LLM partially learns from the entire communication
history.

Remark 3. In our model, the investor is rational but the LLM in our model is not. Given
the LLM’s learning in (16), the investor conjectures the LLM’s posterior belief p̂t(pt) based
on her belief pt. If the LLM were rational, it would back out the investor’s belief pt from p̂t as
well. If both parties were rational, asymmetric information would not arise in our extension
of the LLM’s partial learning.

2.3 Equilibrium Definition

Consultation with the human advisor. Suppose the investor consults with the human
advisor and her preference is revealed as ω.

Definition 1. When the advisor is human, an equilibrium consists of the advisor’s signaling
rules, denoted by π(mh|θω), and an action rule for the investor a(mh), such that:

6One can consider the following microfoundation. Let {Xi} be iid Bernoulli random variables with
P(Xi = 1) = κ. Then

ẑt − ẑ0 =
∫ t

0
1Xs

dzt = lim
n→∞

tn−1∑
s=0

[
lim

K→∞

K∑
k=1

1Xsk

1
K

(
z s+1

n
− z s

n

)]
= lim

n→∞

tn−1∑
s=0

κ
(

z s+1
n

− z s
n

)
= κ

∫ t

0
dzt,

where the second last equation applied the Law of Large Numbers.
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(i) for any realization of θω,
∫

π(mh|θω)dmh = 1, and if mh∗ is on the support of π(·|θω),
then m∗ solves maxmh Uh(a(mh), θω) where Uh(a, θω) is given in Eq. (3).

(ii) for each mh, a(mh) solves maxa E[ U(a, ω, θω)] as in Eq. (4).

Consultation with the LLM. Given the evolvement of her belief {pt}, the investor faces
an optimal stopping problem

(SP ) sup
τ≥0

Eω
{∫ τ

0
e−λt[−c + λg(pt, p̂t(pt))]dt + e−λτ g(pτ , p̂τ (pτ ))

}
,

where her belief pt evolves according to Eq. (13). With probability e−λτ , the game has
not stopped by time τ , allowing the investor to end communication voluntarily and receive
g(pτ , p̂τ ) in Eq. (8). In the baseline case, p̂τ = p̂0, while in the extension, p̂τ (pτ ) is a function
of pτ as implied by Eq. (16). At any earlier time t < τ , the probability that the game has
not yet ended is e−λt; during the next time interval dt, the investor incurs communication
cost cdt, and with probability λdt, the game ends exogenously and she receives g(pt, p̂t).

Definition 2. When the investor consults the LLM, an equilibrium consists of the investor’s
stopping rule τ , the LLM’s recommendation mL(p̂) and the investor’s action a(mL) such that:

(i) Stopping time τ solves the investor’s communication problem (SP );

(ii) The process of pt is given by (12), and the process of p̂t is implicitly given by (16),
with the baseline case of κ = 0 and p̂t = p̂0;

(iii) Given any belief p̂ ∈ [0, 1], the LLM’s recommendation mL(p̂) solves maxmL UL(mL, p̂, θ1, θ0)
and satisfies Eq. (6);

(iv) Given any pair of beliefs p ∈ [0, 1] and p̂ ∈ [0, 1], the investor’s action a(mL) solves
maxa E[U(a, p, θ1, θ0)|mL(p̂)].

3 Equilibrium

We briefly characterize the equilibrium under the human advisor in Section 3.1 as a bench-
mark for comparison with AI advising. In Section 3.2, we construct the equilibrium with
the LLM advisor and solve it in closed form.
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3.1 Human advisor: cheap talk

When consulting a human advisor, communication about the soft information is efficient
and ω becomes public. However, as in the standard cheap talk literature (Crawford and
Sobel, 1982), misaligned objectives between the investor and advisor lead to information
loss about the fundamental state θω. Since the human advisor is biased with b > 0 and his
message mh is non-verifiable, he has an incentive to exaggerate the fundamental state θω by
sending a higher message mh to induce a higher action a. Anticipating this, the investor
rationally discounts the overly optimistic messages. In equilibrium, only partial information
about θ̃ can be credibly communicated. The following proposition, as a direct application of
Theorem 1 of Crawford and Sobel (1982), characterizes the equilibrium.

Proposition 1. Suppose b is sufficiently small. There exists a positive integer N(b) such
that for every N with 1 ≤ N ≤ N(b), there exists at least one equilibrium where the support
of θω is partitioned into intervals by −∞ = θ0 < θ1 < · · · < θN = ∞, and the human advisor
sends a distinct message mh

i for each interval [θi−1, θi). At each threshold θi, the advisor is
indifferent between adjacent messages:

θi = a(mh
i ) + a(mh

i+1)
2 − b. (17)

Given message mh
i , the investor takes action

ai = E[θ | θ ∈ [θi−1, θi)] = µω + σϵ · ϕ (θi−1) − ϕ (θi)
Φ (θi) − Φ (θi−1)

, (18)

where ϕ and Φ are respectively the PDF and CDF of fundamental state θω ∼ N(µω, σ2
ϵ ).

Proposition 1 shows that the equilibrium takes the form of a partitional signal structure.
For each distinct message mi corresponding to an interval [θi−1, θi), the investor’s optimal
action in Eq. (18) is the conditional expectation—the truncated normal mean over the inter-
val, reflecting her quadratic loss utility in (2). In equilibrium, the advisor must be indifferent
at each threshold θi, which requires Uh(a(mh

i ), θi) = Uh(a(mh
i+1), θi), or equivalently (17).

We focus on the equilibrium with the most informative signal structure (i.e., the highest
number of partitions N). Since preference uncertainty is resolved, the investor’s expected
utility is depends solely on the residual fundamental uncertainty about θω:

E[U(a(mh), ω, θω)] ≡ −
N∑

i=1
P([θi−1, θi)) · Var(θω | [θi−1, θi)),
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where Var(θω | [θi−1, θi)) is the variance of a truncated normal distribution over [θi−1, θi].7

The investor enjoys a higher payoff if more information about θω is transmitted, and the
extent of information loss is determined by the magnitude of the advisor’s bias b. As b

increases, the number of partitions decreases, reducing the investor’s payoff. In the limit as
b → ∞, communication becomes uninformative (babbling equilibrium), and the principal
learns only her preference.

3.2 AI advising: equilibrium construction

We begin by analyzing the investor’s expected payoff given any pair of beliefs (p, p̂), high-
lighting the effect of inefficient communication of the soft information ω. We then construct
the equilibrium of interest and provide a closed-form solution.

3.2.1 Stopping value.

Recall that the investor’s expected payoff when seeking recommendation is given in (8) in
Section 2.1.3. The following lemma characterizes its value.

Lemma 1. (Stopping value) Given any pair of the investor’s belief p and the LLM’s belief
p̂ about ω = 1, the investor’s expected payoff when seeking recommendation is

g(p, p̂) = −σ2
ϵ

p(1 − p̂)2 + (1 − p)p̂2

p̂2 + (1 − p̂)2 − p(1 − p)
[
(µ1 − µ0)2 + (2p̂ − 1)2σ2

ϵ

p̂2 + (1 − p̂)2

]
. (19)

Figure 1 provides an illustration of g(p, p̂). The core friction of AI advising arises from
the residual preference uncertainty—inefficient communication of the soft information ω.
When both the investor and the LLM are certain and agree on ω—that is, p = p̂ = 1 or
p = p̂ = 0—the investor enjoys the highest possible payoff, g(p, p̂) = 0.

Otherwise, we rewrite (19) as follows to clarify inefficiency affects the investor’s payoff:

g(p, p̂) = −
[
p Var(θ̃1 | mL) + (1 − p) Var(θ̃2 | mL)

]
︸ ︷︷ ︸

MSE

−p(1 − p)E[∆µ2
θ|mL|mL], (20)

where ∆µθ|mL = E[θ̃1|mL] − E[θ̃0|mL] is the gap in the conditional mean. The last term
captures the direct cost of preference uncertainty. This cost is small when the distributions

7The explicit expression is

Var(θω | [θi−1, θi)) = σ2
ϵ

[
1 +

θi−1−µω

σϵ
· ϕ (θi−1) − θi−µω

σϵ
· ϕ (θi)

Φ (θi) − Φ (θi−1) −
(

ϕ (θi−1) − ϕ (θi)
Φ (θi) − Φ (θi−1)

)2
]

,

where ϕ and Φ denote the PDF and CDF of θ̃ω ∼ N(µω, σ2
ϵ ), respectively.
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Figure 1: Investor’s stopping value g(p, p̂). Figure shows the investor’s expected utility when seeking
recommendation, g(p, p̂), as a function of the investor’s belief p in the horizontal axis and the LLM’s belief
p̂ in the vertical axis. Parameters: µ1 = 1, µ0 = 0, σϵ = 1.

of θ̃1 and θ̃0 are close—so that distinguishing between them is unnecessary (i.e., ∆µθ|mL is
small), or when the investor herself is certain about her preference (i.e., p is close to 1 or 0)
and can adjust her action accordingly towards θ̃ω.

In addition, even though the LLM is unbiased, the investor is also subject to residual
fundamental uncertainty that arises from the preference uncertainty, as captured by the first
two terms in (20) . Since the LLM’s recommendation mL in (6) is a weighted average of
potential fundamentals, it is a noisy signal for either fundamental θ1 or θ0. (Remark 1 gives
a short discussion why the LLM does not send (θ1, θ0) as message directly.)

As illustrated in Figure 1, the investor’s payoff is higher when she is more certain about
her preference, that is, as p approaches 0 or 1. This creates an incentive to continue communi-
cation about ω before ultimately seeking a recommendation. In the dynamic communication
problem analyzed next, the investor trades off the benefit of learning more about ω against
the ongoing cost of communication.

In addition, the principal’s payoff is higher when the LLM’s belief is more aligned with
hers—along the 45-degree line in Figure 1. In the baseline case, where the LLM has only
one-shot memory based on dst− so its belief remains fixed at its pre-trained value p̂t = p̂0,
the investor’s payoff is high when she is the typical customer in the LLM’s pre-training. In
the extension case, where the LLM partially learns from the communication, the investor
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would enjoy a higher payoff as alignment improves over time.
Note that g(p, p̂) is the stopping value in the dynamic communication. Since p̂ = p̂0 in

the baseline and p̂ is a function of p in the extension, we can express the stopping value as
a function of the investor’s belief: g(p) ≡ g(p, p̂(p)).

3.2.2 Value function and optimal policy

The dynamic communication problem is stationary and the value function of the investor
depends only on her belief p. Let V (p) denote the investor’s value in state p. We conjecture
that there exits 0 ≤ p < p ≤ 1 such that the investor continues the communication with the
LLM if p ∈ (p, p).

Outside of the continuation region, p /∈ (p, p), the investor immediately seeks recommen-
dation from the LLM and the game stops. The value function is simply the stopping value
g(p) ≡ g(p, p̂(p)) in Lemma 1.

For all p ∈ (p, p), the investor incurs cost c to initiate another round of interaction
with the LLM. With probability λdt, the communication ends exogenously and she receives
the recommendation immediately. Otherwise, the investor receives her continuation payoff.
Hence,

V (p) = −cdt + λdtg(p) + (1 − λdt)Ep[V (p + dp)]. (21)

Applying the Ito’s formula to the right-hand side of (21) gives

V (p) ≈ −cdt + λdtg(p) + (1 − λdt)Ep[V (p) + V ′(p)dp + 1
2V ′′(p)(dp)2].

Using the law of motion is given in (13), and taking the limit of dt → 0 gives a linear second-
order differential equation for the investor’s value function in the continuation region:

−c + λ (g (p) − V (p)) + p2 (1 − p)2

2σ2 V ′′ (p) = 0. (22)

All solutions of the differential equation take the following form:

V (p) = Q(p) + C1p
1
2 +γ(1 − p) 1

2 −γ + C2p
1
2 −γ(1 − p) 1

2 +γ, (23)

where γ ≡
√

2σ2λ + 1
4 . The term Q(p) is one particular solution to (22), and under the

baseline case where p̂ = p̂0, we provide the closed-form Q(p) in Appendix A.3. The two
constants C1 and C2 are yet to be determined.
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The constants are pinned down by the value-matching conditions,

V (p) = g(p), (24)

V (p) = g(p). (25)

Finally, the two equilibrium belief thresholds p and p satisfy two smooth pasting condi-
tions, which are required such that the investor’s strategy solves (SP ). Specifically,

V ′(p) = g′(p), (26)

V ′(p) = g′(p). (27)

Baseline case: κ = 0. In the baseline case, the LLM has only one-shot memory and makes
its recommendation based solely on dst− , and its belief remains fixed under the dynamic
setting: p̂t = E[ω = 1|dst− ] = p̂0.

In this case, we can show that the investor’s optimal stopping thresholds p and p are
symmetric with respect to 1

2 . To see this, v (p) = V (p) − g (p) captures the option value of
waiting. The differential equation (22) could be rewritten as

λv (p) = p2 (1 − p)2

2σ2 g′′ (p) − c + p2 (1 − p)2

2σ2 v′′ (p) .

Importantly, g(p) is a quadratic function of p so g′′ (p) is a constant. It is clear to see that
both the flow benefit of waiting, p2(1−p)2

2σ2 g′′ (p) − c, and the volatility p2(1−p)2

2σ2 are symmetric
for p around 1

2 . Intuitively, when the LLM’s belief is fixed, the labels ω = 1 or 0 for the
investor’s preference type are interchangeable. In contrast, in the extension case where κ > 0,

this symmetry breaks down: the flow benefit of waiting depends on how the LLM’s belief
evolves, which in tern depends on its prior.

Remark 4. The quadratic form of g(p) arises in many other applications as well. When an
economic agent’s payoff is linear in her information, as she also chooses an action based on
that information, the resulting value function becomes quadratic in the information.

The following proposition summarizes the equilibrium in the baseline case.

Proposition 2. When q2 ≡ (µ1 − µ0)2 + (2p̂−1)2σ2
ϵ

p̂2+(1−p̂)2 > 16cσ2, there exists a unique pair of
stopping thresholds p and p that are symmetric around 0.5, such that

1. When p /∈ (p, p), the investor stops communication and receives g(p, p̂) in (19);
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Figure 2: Optimal policy and value function (baseline κ = 0). The figure shows the continuation
region p ∈ (p, p) (shaded area), the investor’s value function V (p) (red line) and stopping value g(p) ≡ g(p, p̂0)
(black dotted). Parameters: µ1 = 0.3, µ0 = 0, σϵ = 0.8, σ = 0.3, λ = 0.3, c = 0.045, p̂0 = 0.51.

2. When p ∈ (p, p), the investor communicates and her value is

V (p) = g(p) − c

γ
− q2

γ
[U1(p)I2(p) − U2(p)I1(p)] + C(p) [U1(p) + U2(p)] , (28)

where U1(p) ≡ p
1
2 +γ(1 − p) 1

2 −γ, U2(p) ≡ p
1
2 −γ(1 − p) 1

2 +γ, I1(p) ≡
∫ p

1
2

U1(s)ds, I2(p) ≡∫ p
1
2

U2(s)ds, and γ =
√

2σ2λ + 1
4 . The constant is given by

C(p) =
c
λ

+ q2
γ

[
U1
(
p
)

I2
(
p
)

− U2
(
p
)

I1
(
p
)]

U1
(
p
)

+ U2
(
p
) .

The optimal stopping thresholds are uniquely determined by p = 1 − p and

d

dp

{ c
λ

+ q2
γ

[U1 (p) I2 (p) − U2 (p) I1 (p)]
U1 (p) + U2 (p)

}∣∣∣∣∣
p=p

= 0, where p ∈ (0, 0.5), (29)

Figure 2 illustrates the equilibrium. There are a few things worth noting. Since the LLM’s
belief is fixed at p̂t = p̂0 > 1

2 , the investor’s stopping value g(p) and value function V (p) are
tilted upwards for p > 1

2 , where her belief p is more aligned with the LLM’s. However, the
optimal stopping thresholds p, p are symmetric around p = 1

2 . In the shaded continuation
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region, the investor’s value function V (p) lies above the immediate stopping payoff g(p), so
she chooses to continue communication. Notably, even if the preference uncertainty is fully
resolved, that is p = 1 or p = 0, the investor’s payoff U < 0 due to the residual fundamental
uncertainty: since the LLM does not learn, its recommendation mL is a noisy signal of the
true fundamental θω.

LLM’s partial learning: the case of κ > 0. In this case, for each signal st generated in
the communication, the LLM absorbs the signal with probability κ > 0. The baseline case
where the LLM only has a one-shot memory could be nested as κ = 0. For this extension,
we consider a sufficiently small κ, under which the structure of the continuation region in
Proposition 2 remains robust.

As discussed in Section 2.2.1, the update in the LLM’s log-likelihood ratio ẑt ≡ ln qt

1−qt
is

κ fraction of that of the investor. The following lemma summarizes the LLM’s belief process.

Lemma 2. The log-likelihood ratio of the LLM’s belief ẑt ≡ ln qt

1−qt
satisfies

ẑt = ẑ0 + κ(zt − z0).

Accordingly, the LLM’s belief is a function of the investor’s belief pt:

p̂t (pt) =
p̂0

1−p̂0

[
(pt/p0)

(1−pt)/(1−p0)

]κ
1 + p̂0

1−p̂0

[
(pt/p0)

(1−pt)/(1−p0)

]κ .

Under a sufficiently small κ, the investor continues communication when p ∈ (p, p) and
stops immediately otherwise. Since the LLM also partially learns from the communication,
the optimal thresholds p and p are no longer symmetric around 1

2 when p̂0 ̸= 1
2 . Instead,

learning is skewed towards the LLM’s prior: for example, if p̂0 > 1
2 , we have p − 1

2 > 1
2 − p.

For the remainder of the equilibrium, the investor’s value in the continuation region is
given in (22). The two value matching conditions (24) and (25), and the two smooth pasting
conditions (26) and (27) determine the constants C1, C2 and the optimal policies p, p.

Figure 3 provides an illustration of the equilibrium. As shown in the left panel, the in-
vestor’s attains the highest possible payoff, U = 0, when she is certain about her preference—
that is, when p = 0 or 1. If the investor perfectly learns ω, the LLM’s posterior belief is also
p̂ = 0 or 1 (an infinite z implies an infinite ẑ). However, the investor stops learning before
reaching p = 0 or 1 in equilibrium. As illustrated by Figure 3, the investor has a higher
incentive to communicate and stops at more extreme p, p when the LLM partially learns
from past communication.
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Figure 3: Optimal policy and value function (extension κ > 0). The left panel shows the full plot for
p ∈ [0, 1] and the right panel shows the zoomed plot p ∈ (0.01, 0.99). The figure shows the continuation region
p ∈ (p, p) (shaded area), the investor’s value function V (p) (red line) and stopping value g(p) ≡ g(p, p̂0) (black
dotted). Parameters: µ1 = 0.3, µ0 = 0, σϵ = 0.8, σ = 0.3, λ = 0.4, c = 0.06, ln p̂0

1−p̂0
= 0.03, κ = 0.019.

3.3 Optimal AI Training

Developers can train LLMs using targeted data or alignment methods to affect LLM’s un-
derstanding of the representative users—captured in the model as its prior belief p̂0. Given
this, for an investor with a prior belief p0, what choice of LLM training maximizes her value?
Does she benefit more from an LLM whose prior closely aligns with her own belief, or from
one that holds a more “opinionated” stance than she does? Intuitively, an investor perceives
recommendations from a more “aligned” LLM as less noisy. However, consulting a more spe-
cialized or opinionated LLM results in a more engaged conversation, during which greater
uncertainty about her needs, ω, can be resolved.

We examine the baseline case where the LLM has one-shot memory and does not update
its belief, so that p̂ is fixed at the pretraining level p̂0. The optimal LLM belief is plotted in
Figure 4 and Proposition 3 presents the formal results.

Proposition 3. There exist threshold prior beliefs p0 and p0, satisfying p0 + p0 = 1, such
that for a user with prior belief p0 ∈ [0, 1], the optimal LLM training choice p̂∗(p0) ≡
arg maxp̂ V (p0; p̂) satisfies

p̂∗ (p0)


> p0, if p0 ∈ (0.5, p0) ,

< p0, if p0 ∈
(
p0, 0.5

)
,

= p0, if p0 = 0.5, or p0 /∈
(
p0, p0

)
.

(30)
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Figure 4: Optimal LLM Training (baseline κ = 0). The figure plots the optimal pretraining of LLM,
p̂∗, for uses with different prior beliefs p0. The dashed red line plots a benchmark case of the optimal
LLM training if the user does not communicate and immediately seeks recommendation. Parameters: µ1 =
0.4, µ0 = 0, σϵ = 0.2, σ = 0.3, λ = 0.3, c = 0.045, κ = 0.

At these threshold priors, we have p(p̂ = p0) = p0 and p(p̂ = p0) = p0,

First, consider the benchmark case where the investor does not communicate with the
LLM about her needs and seeks recommendation immediately. Her resulting value is g(p0; p̂)
given in (19). Without any option value of learning, her most preferred LLM training is
exactly p̂ = p0 that aligns with her belief, as illustrated by the red dashed line in Figure 4.

The option value of learning tilts the investor’s preference toward a more “opinionated”
LLM—one that leans in the direction of her prior belief. For example, in Figure 4, when the
investor’s prior is p0 = 0.2, which leans towards ω = 0, her most preferred LLM belief is the
aligned prior of 0.2 if she immediately exercises. However, if she engages in communication
to clarify her needs, she prefers a more opinionated LLM with a prior of 0.1. When investors
hold extreme priors with p0 /∈ (p0, p0), she chooses not to communicate and prefers an aligned
LLM with a prior of p̂ = p0.

When the investor is most uncertain, with a prior of p0 = 0, the option value of learning
is highest. However, we can show analytically that this option value is dominated by the
perceived noise of the recommendations from an opinionated or specialized LLM. In this
case, the investor prefers the LLM to be equally “confused,” so that p̂∗(p0 = 0.5) = 0.5.

3.4 Comparative Statics of AI Advising

We present a few comparatives statics based on the baseline equilibrium in Proposition 2.
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Figure 5: The effects of communication cost c. The left panel plots the optimal stopping thresholds
p, p as a function of c, and the right panel shows the investor’s value at prior V (p0) as a function of c.
Baseline parameters: µ1 = 0.3, µ0 = 0, σϵ = 0.8, σ = 0.3, λ = 0.3, p0 = p̂0 = 0.5, κ = 0.

Communication cost c. The investor trades off the gain from continuing communication
to learn about ω against the communication cost. As illustrated in Figure 5, when the
communication cost c is larger, the principal learns less as suggested by a higher p and a
lower p—she stops communication when she is less sure about ω.

Preference uncertainty ∆µ. We discuss how preference uncertainty affects AI advising.
The inefficient communication of soft information ω is the core friction when the investor
consults an LLM.

First, we discuss how the magnitude of preference uncertainty affects the equilibrium.
When the distributions of θ̃1 and θ̃0 are close to each other, preference uncertainty is less
consequential, and receiving an impersonalized recommendation from the LLM causes little
harm. Recall that θ̃1 ∼ N(µ1, σ2

ϵ ) and θ̃0 ∼ N(µ0, σ2
ϵ ) are independent normal random

variables. In our numerical exercise, we fix the value of µ1 and vary µ0 for µ0 < µ1. In Figure
6, the higher is µ0—or the smaller is ∆µ ≡ µ1 − µ0, the investor learns less about ω (the
optimal stopping thresholds become less extreme) and enjoys a higher value given the less
consequential preference uncertainty. Intuitively, when the task is simple and personalization
matters less, the investor has less incentive to figure out her exact preferences and she will
still be better off.

Therefore, tasks without distinct contingencies are more suitable for AI advising. For
example, tourism planning is easier, as the destination choice often reflects stereotypical pref-
erences. In contrast, insurance or medical consultations involve much more soft information,
where identifying the correct ω is critical.
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Figure 6: The effects of preference uncertainty ∆µ. The left panel plots the optimal stopping
thresholds p, p as a function of ∆µ ≡ µ1 −µ0, and the right panel shows the investor’s value at prior V (p0) as
a function of ∆µ. Baseline parameters: c = 0.045, µ0 = 0, σϵ = 0.8, σ = 0.3, λ = 0.3, p0 = p̂0 = 0.5, κ = 0.

Figure 7: The effects of the LLM’s belief p̂. The left panel plots the optimal stopping thresholds p, p
as a function of p̂, and the right panel shows the investor’s value at prior V (p0) as a function of p̂. Baseline
parameters: µ1 = 0.3, µ0 = 0, c = 0.045, σϵ = 0.8, σ = 0.3, λ = 0.3, p0 = 0.5, κ = 0.

We also examine the effects of the LLM’s pretraining model or its belief pt = p̂0. As
illustrated in Figure 7, the principal learns more information if the LLM’s belief is more
extreme. Intuitively, if the LLM is trained towards a specific customer type, the investor
benefits from learning more—either because she matches that type or needs to be more
informed herself to adjust the action on her own.
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Figure 8: The effects of fundamental uncertainty σϵ. The left panel plots the optimal stopping
thresholds p, p as a function of σϵ, and the right panel shows the investor’s value at prior V (p0) as a function
of σϵ. Baseline parameters: µ1 = 0.3, µ0 = 0, c = 0.045, σ = 0.3, λ = 0.3, p0 = p̂ = 0.5, κ = 0.

Fundamental uncertainty σ2
ϵ . Last, we analyze the effects fundamental uncertainty,

which is captured by the variance σ2
ϵ of the fundamental state, θ̃1 or θ̃0. When the advisor

is a human, the investor’s utility is determined by the residual fundamental uncertainty—so
she enjoys a higher payoff when σ2

ϵ is small.
When it comes to AI advising, the investor is still subject to residual fundamental un-

certainty that arises from inefficient communication of preference ω, under which the LLM’s
recommendation is a noisy signal of the true fundamental. Hence, in AI advising, the in-
vestor also enjoys a higher payoff when σ2

ϵ is small, as shown in the lower panel of Figure 8.
Interestingly, as shown in the upper panel, the investor’s optimal policies, p and p, do not
vary with fundamental uncertainty. This suggests that the inefficiency in AI advising comes
from preference uncertainty, and fundamental uncertainty does not affect the endogenous
communication about preference ω.

4 Empirical Analysis

In this section, we discuss model implications and test them using prompt-based simulations
in LLMs.
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4.1 Testable Hypotheses

Building on the theoretical model and its comparative statics, we derive testable hypotheses
that connect the model’s primitives to observable investor behavior and advice outcomes.
Each hypothesis articulates a directional prediction, identifies the underlying mechanism
from the theory, and outlines an empirical strategy for validation.

In a controlled setting, we can simulate the advising process with an LLM using prompt
response logs and resulting portfolio recommendations to directly test several model predic-
tions. These experiments allow us to modify conversation parameters and monitor outcomes
while keeping other factors constant. There are additional testable hypotheses motivated by
the theory that require observational data (such as records of advisor choice and performance
from a financial platform); we list those in Appendix B.1.

H1 (Investor Learning and Decision Quality): The primary value of interacting
with a memory-less LLM advisor stems from the investor clarifying their own initially un-
certain preferences. A deeper interaction allows the investor to reduce their own “preference
uncertainty,” leading to a final investment decision that is better aligned with their true
objectives, even if the LLM’s output remains generic.

The model posits that the investor is initially “confused” and does not fully understand
her own needs summarized by ω. The dialogue with the LLM provides signals that allow
the investor to update her own beliefs about her type, moving her closer to certainty—that
is, her belief about ω, p approaches 1 or 0. Because we control the LLM’s information
set to be the last prompt (short memory), its recommendation does not adapt to a deeper
conversation. However, the now better-informed investor can make a more appropriate final
decision based on her sharpened posterior belief.

H2 (Investor Impatience and Early Termination): Investors who face a higher
opportunity cost of time break off LLM conversations sooner and accept portfolios less
tailored to their stated preferences.

In our model, an impatient investor may experience a Poisson “impatience shock” that
prompts them to end the communication early. This premature truncation of the dialogue
results in the investor gathering less information, which in turn leads to a portfolio decision
that is less tailored to the investor’s true preferences. To test this hypothesis, we examine
the relationship between conversation length and the investor’s final portfolio choice.

H3 (Memory Augmentation and Advisor Performance): Providing the LLM
advisor with a form of persistent memory about past interactions will improve its advice
quality.

The theoretical motivation suggests that human advisors naturally retain and recall ear-
lier parts of conversations and the client’s background, unlike a standard LLM which may
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lose mid-conversation context due to lack of memory. Enhancing the LLM with tools such as
automatically generated summaries of past chat history should help reduce this information
loss, enabling the LLM to better understand and address the investor’s needs.

H4 (Optimal AI Training): An investor generally benefits from an AI advisor whose
recommendation style is more opinionated, meaning more extreme than her own prior belief,
except when she is most uncertain about her type.

Consider a retail investor who suspects she may be more risk-tolerant than average, but
is not entirely sure. Should she consult a general-purpose robo advisor, or one specialized
for aggressive investors? Counterintuitively, our model (Proposition 3) suggests she is better
off with the aggressive specialist. Here is why. If she truly belongs to the aggressive type,
the specialist recommendations will be well-suited and she benefits directly. If she turns out
to be conservative after all, the mismatch between her emerging preferences and the advisor
aggressive stance becomes apparent through the conversation, she notices discomfort with
the risky suggestions, and she can adjust her final decision accordingly. The conversation
itself serves as a diagnostic tool.

The same logic applies in reverse. An investor who leans conservative benefits from
consulting an advisor trained on conservative clients. The key insight is that misalignment
is not necessarily harmful, it can be informative. When an advisor recommendations feel
off, that friction helps the investor learn about herself. The exception is the investor who is
genuinely uncertain and has no directional leaning. For her, an equally uncertain, neutral
advisor is optimal, since there is no prior inclination to amplify.

4.2 Hypothesis Testing with LLM Simulations

To complement our analytical framework, we use prompt-based LLM simulations, a method-
ological innovation that enables the testing of complex economic theories in realistic, inter-
active settings. Unlike traditional laboratory experiments or analytical models, these simu-
lations can generate dynamic, multi-turn conversations that closely approximate real-world
advisory relationships. This approach bridges the critical gap between theoretical rigor and
empirical realism, allowing us to observe how theoretical mechanisms like information ac-
quisition and belief updating operate in practice. This section describes how we construct
investor profiles, implement an LLM-based advisor, and map the discrete simulation envi-
ronment back to the continuous-time model.
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4.2.1 Data and Investor Profiles

The baseline for “optimal” advice in our simulations comes from the Vanguard Investor
Questionnaire, a widely used 11-question survey that generates personalized asset-allocation
recommendations based on an individual’s investment horizon, financial stability and risk
tolerance.8 For example, the questionnaire recommends investors with short time horizons
to hold a smaller fraction of equity in their portfolio, while those with longer horizons to take
on more risks. Similarly, it notes that a stable income stream allows investors to tolerate
greater market volatility and therefore merits a higher equity weight.

In our empirical construction, we draw a subsample from the 2022 public-use Consumer
Finances Survey (SCF) to generate n = 500 hypothetical investor profiles for simulation. To
maintain representativeness, selection is conducted at the household level using probabilities
proportional to the final analysis weights of the survey, reflecting the dual-frame design of
the SCF combining an area-probability sample and a list sample that oversamples high-
income households. After selecting households, an imputed record per household is retained
at random so that the final dataset contains exactly one observation per household while still
reflecting imputation uncertainty. We fix the random seed prior to sampling to ensure that
the draw is fully reproducible across runs. This design preserves fidelity to the underlying
probability structure of the SCF while producing a compact and stable subsample suitable
for repeated LLM experiments.

We then take each simulated profile and use it to complete the Vanguard questionnaire
on the website, recording the recommended stock/bond allocation for each hypothetical
investor. Each profile in our benchmark is thus defined by: (i) a list of question-answer pairs
that can be expressed in natural language, which correspond to the investor’s underlying
preference ω, and (ii) the recommended allocation between equity vs fixed income, returned
by the Vanguard algorithm, which maps to the ideal recommendation ωθ1+(1−ω)θ0 without
any frictions. In this way, we obtain a consistent set of simulated investors, grounded in
established industry practice.

Table 1 presents the correlation structure of the questionnaire responses across our SCF-
based investor profiles. The matrix reveals several important patterns that validate both
our sampling approach and the questionnaire’s internal consistency. First, the strong posi-
tive correlations among risk tolerance questions (Q6-Q8, Q10-Q11) with coefficients ranging
from 0.457 to 0.865 demonstrate that households provide coherent responses across differ-
ent risk scenarios. The particularly high correlation between Q10 and Q11 (0.865), which
both measure willingness to accept short-term losses, confirms that investors have stable risk

8The service is available at the website: https://investor.vanguard.com/tools-calculators/investor-
questionnaire/questions. The questionnaires are listed in Appendix B.2.
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preferences that manifest consistently across similar questions. Second, the high correlation
between time horizon questions (Q1-Q2: 0.712) indicates natural alignment between invest-
ment timeline and planning horizon in our SCF households. Third, the negative correlations
between independent thinking (Q9) and risk tolerance measures suggest that investors who
rely more on their own judgment tend to be more conservative, possibly reflecting awareness
of their own knowledge limitations. Finally, the moderate correlations between financial sta-
bility indicators (Q4-Q5) and other dimensions confirm that income stability and emergency
preparedness represent distinct but related aspects of financial security. These correlation
patterns, emerging from actual household data rather than random generation, provide con-
fidence that our profiles capture realistic interdependencies among investor characteristics.

Table 1: Correlation Matrix of Investor Questionnaire Responses

This table presents the correlation matrix for responses to the 11-question Vanguard Investor Questionnaire
based on 500 SCF household profiles. Each question captures different aspects of investor preferences and
constraints: Q1-Q2 measure investment time horizon and planning period; Q3 captures past investment
experience; Q4-Q5 assess income stability and emergency fund adequacy; Q6-Q8 evaluate risk tolerance
through hypothetical portfolio performance scenarios; Q9 indicates independent thinking in financial decision
making; Q10-Q11 gauge willingness to accept short-term losses for potential long-term gains. All correlations
are calculated using Pearson correlation coefficients on the ordinal response scales.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Q1 1.000
Q2 0.712 1.000
Q3 0.425 0.505 1.000
Q4 0.493 0.659 0.148 1.000
Q5 0.153 0.145 0.310 -0.017 1.000
Q6 0.443 0.441 0.405 0.267 0.042 1.000
Q7 0.386 0.401 0.440 0.215 -0.001 0.700 1.000
Q8 0.171 0.186 0.242 0.115 -0.068 0.457 0.645 1.000
Q9 -0.062 0.001 0.125 -0.124 0.209 -0.229 -0.294 -0.184 1.000
Q10 0.424 0.452 0.501 0.240 0.009 0.862 0.774 0.527 -0.248 1.000
Q11 0.478 0.518 0.570 0.313 0.020 0.779 0.853 0.601 -0.277 0.865 1.000

4.2.2 Conversation with the LLM Advisor

For each investor profile we simulate a conversation between the investor and an LLM-
based advisor. The LLM we use is the then-state-of-the-art OpenAI GPT-5, accessed via
an API at temperature 0.75. Conversations are orchestrated through system and developer
messages that clearly specify each agent’s role and information set. The investor’s system
prompt states that she is preparing to set up an investment portfolio and will interact with
a financial advisor. It also includes the full text of her questionnaire profile. As explained
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below, the investor chats with the LLM based on this questionnaire but makes portfolio
decisions without it. The advisor’s system prompt specifies that it is a financial advisor
whose objective is to determine the client’s optimal allocation between equities and bonds.
It is instructed to remain in information-gathering mode and to ask diagnostic questions
about financial situation, investment experience, time horizon and risk preferences until
the conversation ends. Importantly, the system prompt explicitly forbids the advisor from
providing any recommendations before being told to do so, ensuring that all intermediate
messages consist only of questions.

The interaction unfolds in discrete rounds:

1. Eliciting the prior. Before any questions are asked, the investor reports her prior
preferred equity allocation. She is prompted to return her intended equity percentage as
JSON, and this value is logged. This step parallels the initial belief p0 in our theoretical
model.

2. Question–answer loop. A developer message instructs the advisor to “ask your
client one question that will help you identify their optimal split between equities
and bonds.” The advisor generates a question, which we append to the conversation.
The investor’s developer prompt tells her to answer concisely. She answers truthfully
according to her profile questionnaires, and the answer is appended to both the investor
and advisor message lists. In subsequent rounds the developer instructs the advisor to
“ask your client another question,” so that exactly one question is asked per round.
The conversation thus alternates between one question from the advisor and one answer
from the investor.

3. Termination decision. After each round, the simulation consults the pre-drawn
termination schedule (described below) to determine whether the conversation should
stop. If the investor terminates, the question–answer loop ends; otherwise the advisor
is prompted to ask another question.

4. Recommendations. Upon termination the advisor is asked to provide equity-allocation
recommendations in two ways. First, to simulate the memoryless case, the advisor re-
ceives only the most recent question and answer and is instructed to return the optimal
equity allocation for the individual. Second, to simulate memory, the advisor receives
the entire chat history (including all simulated questions and answers) and is instructed
to produce an optimal equity allocation. In both cases, the advisor’s output must be a
JSON snippet specifying the recommended equity percentage; no narrative explanation
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is allowed. For the full-information advisor, the advisor is given the complete investor
profile up front and asked once for the optimal equity allocation.

5. Final decision. Finally, the investor is told that “the advisor recommends an equity
allocation of x %” and is prompted to choose her final allocation. Like the prior, the
final allocation is returned as JSON. This step captures the investor’s own action in the
theoretical model after observing the advisor’s message.

Throughout the conversation, we log every prompt and response. The strict formatting
(e.g., JSON outputs, one question per round, no unsolicited recommendations) reflects an
attempt to control the LLM’s behavior and reduce hallucinations. The advisor’s inability to
update its belief in the memoryless condition comes from receiving only a single question–
answer pair as input; this effectively resets its context window at every termination event.

We implement three variants of the LLM advisor to isolate the effect of memory:

• Advisor without memory. Motivated by the architecture of current LLMs, we sim-
ulate an advisor that cannot recall previous signals. After each prompt, the LLM
uses only the most recent question–answer pair as context to recommend an alloca-
tion. This design captures the short context windows of Transformer models, whose
self-attention complexity scales quadratically in the input length and cannot reliably
capture the entire query history. Wang and Sun (2025) show that even when longer
contexts are available, retrieval accuracy can deteriorate rapidly due to interference
from earlier inputs; the probability of recalling the most recent key–value pair declines
log-linearly as similar distractors accumulate. Our “no-memory” LLM therefore ap-
proximates our baseline model that the advisor updates its prior based on only the
last signal, p̂t = E[ω = 1|dst− ]. (In the model, the advisor’s belief remains fixed at a
pretraining prior under the continuous time limit.)

• Advisor with memory. In this scenario, the LLM is fed the entire conversation
history as context. It has access to previous answers and can refine its recommendation
as it learns more about the investor. This scenario is our best approximation of an
unbiased human advisor with a transcript of the conversation. This aligns with our
model extension with κ = 1: both the investor and the advisor update their belief
based on the full history of signals {st} before termination; if they share the same
prior, then p̂t = pt.

• Advisor with full information. This counterfactual LLM receives the investor’s
entire questionnaire profile at once. It directly observes ω and effectively faces no pref-
erence uncertainty. This case can also mimic a human advisor who perfectly elicits
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soft information instantaneously, with no bias (b = 0). The full-information advisor’s
recommendation provides an upper bound on achievable accuracy. Note that the ad-
visor’s recommendation may still fall short of the frictionless Vanguard benchmark
because of fundamental uncertainty. While the model assumes that advisors observe
the fundamental realizations θ1 and θ0, in practice, the LLM only observes a noisy
signal of these fundamentals.

4.2.3 Termination and Cost of Communication

We cap the interaction at a maximum of eleven rounds to mirror the finite length of the Van-
guard questionnaire. However, an investor does not necessarily complete all eleven rounds,
as the dialogue can end sooner based on one of two mechanisms: exogenous or endogenous
termination. To model impatience or external factors that cut a conversation short, we intro-
duce an exogenous termination probability of 0.10 per round. Before the simulation begins,
we conduct a Bernoulli draw for each round to determine if an “impatience shock” occurs. If a
shock is scheduled for a given round, the conversation stops automatically after that round’s
question and answer are complete. If no exogenous shock occurs, the investor agent makes
an active, endogenous decision to continue or stop. After answering the advisor’s question,
the investor is prompted with a decision frame that explicitly asks them to weigh the costs
and benefits of more interaction: “Your time is valuable, so each round of communication
with the advisor carries a cost. You should choose to continue interacting with the advisor
if and only if your expected informational gain from an additional round of communication
exceeds your subjective cost of communication. Would you like to continue or terminate the
conversation...?” This prompt directly simulates the optimal stopping trade-off.

This dual-termination mechanism serves as a discrete analogue of the continuous-time
optimal stopping problem in our theoretical model. Each question-answer round in the sim-
ulation corresponds to a small increment of time dt. The exogenous termination probability
models the Poisson shock intensity λ, while the cost of continuing the conversation mirrors
the flow cost c. The endogenous decision to terminate corresponds to the investor choosing
the optimal stopping time τ once her belief pt makes further interaction suboptimal. The
theoretical problem is expressed as:

(SP ) sup
τ≥0

Eω
{∫ τ

0
e−λt[−c + λg(pt, p̂t(pt))]dt + e−λτ g(pτ , p̂τ (pτ ))

}
,

where pt is the investor’s belief about her type and g(·) is the payoff from acting.
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4.3 Empirical Results and Hypothesis Testing

We now present the empirical results from our LLM simulations to test the three main
hypotheses derived from the theoretical model. Our analysis uses data from 500 simulated
investor profiles, each with 5 iterations, yielding 2,500 total observations. The results provide
strong support for the model’s predictions about the role of investor learning, the impact of
communication costs, and the benefits of memory augmentation in AI advising.

4.3.1 Testing H1: Investor Learning and Decision Quality

The first hypothesis posits that LLM advising help investor clarify their own preferences.
Table 2 presents the regression results testing this hypothesis. Across measures, the data
show notable gains in investment accuracy that arise from the advisory process itself.

Investors improved significantly even before receiving any recommendations. As shown
in Columns (1) and (2), accuracy increased by 14.4 percentage points before any advice,
reaching 17.6 percentage points after the advisor’s input. The 3.2 point boost from recom-
mendations, while meaningful, suggests that much of the learning comes from the interactive
process itself rather than solely from the advice received.

Interaction intensity is vital for accuracy improvement. Results from Columns (3) to (4)
show that each additional round between advisor and investor increased interim accuracy
by 0.727 points and final accuracy by 0.771 points. This implies iterative exchanges help
investors gradually refine their understanding of risk and preferences through structured
dialogue.

The actual words exchanged drive learning as well. Column (5) shows that every addi-
tional word spoken by either party increases accuracy by 0.012 points. Columns (6) and (7)
reveal interesting dynamics when examining advisor and investor contributions separately.
Advisor words improve accuracy by 0.020 points per word, while investor words show an
even stronger effect at 0.026 points per word when considered in isolation. This suggests
that articulating and reflecting on one’s own beliefs is particularly valuable for preference
clarification.

However, the multivariate model in Column (8) reveals important nuance. When both
advisor and investor word counts are included simultaneously, advisor words show an even
stronger positive effect, while investor words surprisingly become negative though only
marginally significant. This reversal suggests potential multicollinearity or that once the
advisor’s structuring role is accounted for, excessive investor verbalization may indicate con-
fusion rather than clarity. The advisor’s words appear to be the critical factor in guiding
productive self-reflection, helping investors articulate their preferences efficiently rather than
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Table 2: Investor Learning and Decision Quality

This table reports regression results examining factors influencing the accuracy of investors’ investment
choices, measured at interim and final stages, as well as accuracy improvements. Columns (1)-(2) display
improvements in investment choice accuracy at pre- and post-recommendation stages. Column (3) specifi-
cally illustrates investors’ interim investment choice accuracy, while Columns (4)-(8) present investors’ final
investment choice accuracy. Accuracy here is defined as 100 minus the deviation from the optimal portfolio
allocation, expressed in percentage points. Independent variables include the number of interaction rounds
(# Rounds, Total # Rounds), total words exchanged, and separately, the number of words contributed by
the advisor and the investor. Standard errors, clustered by investor profile, are shown in parentheses. Profile
fixed effects are incorporated in Columns (3)-(8) to control for investor-specific characteristics. ***, **, and
* denote the 1%, 5%, and 10% confidence level, respectively.

Accuracy Improvement Investor’s Accuracy
Pre-Rec Post-Rec Interim Final

(1) (2) (3) (4) (5) (6) (7) (8)
# Rounds 0.727***

(0.079)
Total # Rounds 0.771***

(0.120)
Total # Words 0.012***

(0.002)
Total # Advisor’s Words 0.020*** 0.029***

(0.003) (0.006)
Total # Investor’s Words 0.026*** -0.018*

(0.006) (0.009)
Constant 14.4*** 17.6***

(0.717) (0.887)
Profile FE N N Y Y Y Y Y Y
Clustered by Profile Y Y Y Y Y Y Y Y
Observations 2,500 2,500 8,673 2,500 2,500 2,500 2,500 2,500
Adjusted R2 - - 0.693 0.923 0.922 0.922 0.921 0.922
Note: *p < 0.1; **p < 0.05; ***p < 0.01
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meandering through unfocused self-expression.
The consistently strong effects of structured dialogue, combined with the substantial but

not dominant role of final recommendations, suggest the primary benefit of LLM advising lies
in facilitating investor self-discovery through guided interaction. For AI advisory systems,
this means the greatest value comes from designing sophisticated questioning frameworks
that help users systematically explore and clarify their preferences, rather than focusing
solely on recommendation algorithms.

4.3.2 Testing H2: Investor Impatience and Early Termination

The second hypothesis examines whether investor impatience, manifested through early con-
versation termination, undermines the advisor’s ability to provide accurate recommenda-
tions. Table 3 presents regression results analyzing the factors that influence the accuracy
of the AI advisor’s investment recommendations.

The results demonstrate a strong positive relationship between interaction intensity and
advisor recommendation accuracy. Column (1) shows that each additional round of interac-
tion increases the advisor’s recommendation accuracy by 0.931 percentage points, indicating
that extended dialogue enables the advisor to better understand investor preferences and
circumstances. This finding is reinforced by the word-count analyses in Columns (2)-(4).

The decomposition of word contributions reveals interesting dynamics in the advisory re-
lationship. When examined separately, advisor words (Column 3) increase recommendation
accuracy by 0.025 points per word, while investor words (Column 4) show an even larger
effect of 0.040 points per word. However, when both are included simultaneously in Col-
umn (5), the advisor’s words remain highly significant at 0.021 points per word, while the
investor’s words become statistically insignificant. This pattern, aligned with the findings in
Table 2, suggests that while investor input is valuable for providing information, the advi-
sor’s ability to process, synthesize, and respond to that information is the critical factor in
generating accurate recommendations.

The distribution of the total number of rounds in Figure 9 distinguishes between two
types of conversation endings, highlighting key dynamics of information acquisition. En-
dogenous terminations occur when investors stop early because their beliefs have sufficiently
converged, representing optimal stopping in response to the tradeoff between information
gained and the costs incurred. In contrast, exogenous terminations happen either due to a
random stopping probability or upon reaching the eleven-question cap, independent of belief
convergence, though the maximum length of 11 rounds is never actually reached. The dis-
tribution reveals that exogenous termination is more frequent in the first few rounds, while
endogenous termination becomes the majority after the third round. This indicates that the
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Table 3: Investor Impatience and Early Termination

This table reports regression results examining factors influencing the accuracy of the AI advisor’s investment
recommendations. All columns present the accuracy of the advisor’s recommendations, measured as 100
minus the deviation from the optimal portfolio allocation, expressed in percentage points. Columns (1)-(4)
examine individual factors in isolation, while Column (5) presents a specification including both advisor
and investor word counts. Column (6) examines the effect of exogenous termination. Independent variables
include the total number of interaction rounds (Total # Rounds), total words exchanged, separately the
number of words contributed by the advisor and the investor, and an indicator for whether the conversation
was terminated exogenously rather than reaching a natural conclusion. Standard errors, clustered by investor
profile, are shown in parentheses. Profile fixed effects are incorporated in all columns to control for investor-
specific characteristics. ***, **, and * denote the 1%, 5%, and 10% confidence level, respectively.

Accuracy of Advisor’s Recommendation
(1) (2) (3) (4) (5) (6)

Total # Rounds 0.931***
(0.131)

Total # Words 0.016***
(0.002)

Total # Advisor’s Words 0.025*** 0.021***
(0.004) (0.006)

Total # Investor’s Words 0.040*** 0.008
(0.006) (0.010)

I{Exogenous Termination} -0.988***
(0.351)

Profile FE Y Y Y Y Y Y
Clustered by Profile Y Y Y Y Y Y
Observations 2,500 2,500 2,500 2,500 2,500 2,500
Adjusted R2 0.498 0.497 0.497 0.494 0.497 0.480
Note: *p < 0.1; **p < 0.05; ***p < 0.01
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Figure 9: Endogenous and Exogenous Terminations

This stacked bar chart shows the distribution of conversation rounds by termination type across the dataset.
The x-axis represents the total number of question rounds, while the y-axis shows the absolute count of
cases. Each bar is divided into two categories: Endogenous Termination (blue) and Exogenous Termination
(red). Endogenous termination occurs when the conversation naturally concludes based on the conversation
flow, while exogenous termination happens due to external shocks.
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investor actively weighs the tradeoff between gaining more information from conversation
and the cost of communication. Moreover, just a few rounds of conversation are already
quite helpful for the investor to become satisfied.

The central finding regarding investor impatience emerges from Column (6), which shows
that exogenous termination—conversations ended artificially due to external shocks rather
than reaching natural completion—reduces advisor recommendation accuracy by 0.988 per-
centage points. This nearly full percentage point penalty demonstrates that premature
conversation endings significantly impair the advisor’s performance.

These results provide strong support for H2, indicating that investor impatience creates
meaningful costs in advisory quality. The consistent negative impact of early termination,
combined with the positive effects of extended interaction, suggests that the full advisory
process requires adequate time and engagement to function effectively. For AI advisory
systems, this highlights the importance of designing mechanisms that encourage sustained
engagement and discourage premature exit from the advisory process.

4.3.3 Testing H3: Memory Augmentation and Advisor Performance

The third hypothesis examines whether providing LLM advisors with persistent memory
improves their performance relative to memoryless systems. Figure 10 presents the results
testing the benefits of memory augmentation.

The visualization demonstrates a clear hierarchy in recommendation quality based on
information access: scenarios where the advisor has access to all available information in-
cluding the investor’s complete profile achieve the highest accuracy, followed by scenarios
where the advisor has access to the complete conversation history, while scenarios where the
advisor only sees the current question perform the worst. This strongly supports Hypoth-
esis 3, illustrating that both conversation memory and comprehensive profile information
significantly enhance AI advisor performance. These results underscore that memory aug-
mentation and full access to user information are both valuable for generating accurate
investment recommendations.

4.3.4 Testing H4: Optimal AI Training and Advisor Priors

The fourth hypothesis examines whether investors benefit from AI advisors whose recom-
mendations are more opinionated than their own beliefs, rather than merely aligned. To test
this prediction, we implement a weighted pool analysis that directly maps to the theoretical
structure of the model.

The key insight is to partition investor profiles into two pools based on their true prefer-
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Figure 10: Memory Augmentation and Advisor Performance

This bar chart compares AI advisor recommendation accuracy across three information access scenarios:
No Memory (advisor only sees the current question), Full Memory (advisor has access to the complete
conversation history), and Full Info (advisor has access to all available information including the investor’s
complete profile). The y-axis shows mean recommendation accuracy as a percentage, with higher values
indicating better recommendation quality and closer to the optimal equity allocation. Error bars represent
standard errors.
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ence type, then compute expected payoffs by weighting these pools according to the investor
prior belief. We define two groups. The conservative pool consists of investors whose Van-
guard optimal allocation is 0% equity, comprising 25 profiles and 15,125 observations. The
aggressive pool consists of investors whose Vanguard optimal allocation is 80 to 100% equity,
also comprising 25 profiles and 15,125 observations.

For each hypothetical investor with prior belief p0 ranging from 0 to 100% in 10 percentage
point increments, we compute the expected accuracy for each advisor recommendation level.
The expected accuracy is a weighted average of accuracy in the aggressive pool, weighted
by p0, and accuracy in the conservative pool, weighted by 1 − p0. The optimal advisor
recommendation for each investor prior is then the recommendation level that maximizes
this expected accuracy. This methodology directly implements the theoretical expectation
operator and allows us to trace out the empirical analog of Figure 4.

We use simulation data from 50 investor profiles drawn from the tails of the Vanguard
allocation distribution. These include the 25 profiles with the lowest optimal allocations,
all recommending 0% equity, and the 25 profiles with the highest optimal allocations (18
profiles at 80% and 7 profiles at 100%, yielding a mean of 85.6% equity). Each profile is
simulated for 605 iterations, yielding 30,250 total observations. The advisor recommendation
in each simulation serves as a proxy for the LLM prior, which we bin into 10 percentage point
increments.

Figure 11 presents the main finding. The empirical optimal advisor recommendation
exhibits a striking pattern that qualitatively matches the theoretical prediction in Figure 4.

For conservative investors whose prior belief is 20% or lower, the optimal recommendation
is 0% equity, which is more conservative than their own belief. These investors benefit
from an advisor who strongly reinforces their conservative inclination. For moderate to
aggressive investors with prior beliefs between 40% and 80%, the optimal recommendation
is approximately 70% equity, which exceeds their own belief for most of this range. The
curve lies above the 45 degree line, indicating that these investors benefit from advisors who
are more aggressive than themselves. For highly aggressive investors with prior beliefs of
90% or higher, the optimal recommendation is 100% equity, more extreme than their already
high belief.

The step function pattern in Figure 11, rather than the smooth curve in the theoretical
Figure 4, reflects two empirical features. First, advisor recommendations are binned into
discrete 10 percentage point increments. Second, there is limited data support for recom-
mendation levels that strongly contradict investor profiles, since advisors rarely recommend
0% equity to aggressive investors. Despite these limitations, the qualitative pattern strongly
supports Hypothesis 4. Investors benefit from opinionated AI advisors whose recommenda-
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Figure 11: Optimal AI Advisor Recommendation by Investor Prior Belief

This figure plots the optimal advisor recommendation, measured as equity allocation percentage, against the
investor prior belief about needing high equity. The x-axis represents the investor belief, where 0% indicates
certainty of needing low equity and 100% indicates certainty of needing high equity. The blue line shows the
empirically optimal advisor recommendation for each belief level. The dashed diagonal line represents the
reference case where the advisor recommendation exactly matches the investor belief. When the blue line
lies above the diagonal, the optimal advisor recommends a higher equity allocation than the investor own
belief, indicating that opinionated advisors outperform aligned ones. Data consists of 50 profiles with 605
iterations each, totaling 30,250 observations from LLM simulated advisor investor conversations.
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tions are more extreme than their own beliefs, consistent with the option value of learning
emphasized in the theoretical model.

4.3.5 Summary of Empirical Findings

The empirical results provide strong support for all four hypotheses derived from the theoret-
ical model. H1 demonstrates that the primary value of LLM advising comes from investors
clarifying their own preferences through self-reflection rather than receiving increasingly per-
sonalized recommendations, with each additional round improving accuracy by 1.03 percent-
age points and each word exchanged contributing 0.017 points to accuracy. H2 reveals that
investor impatience, manifested through early conversation termination, significantly under-
mines advisor performance, with exogenous termination reducing recommendation accuracy
by 2.62 percentage points. H3 shows that memory augmentation substantially improves AI
advisor performance, with scenarios providing full information access achieving the highest
accuracy, followed by full memory access, while no-memory scenarios perform worst. H4
confirms the model prediction about optimal AI training. Using a focused subsample of
50 profiles from the tails of the allocation distribution with 605 iterations each, we find
that investors benefit from opinionated advisors whose recommendations are more extreme
than their own prior beliefs, with the empirical optimal recommendation curve qualitatively
matching the theoretical prediction in Proposition 3.

The ability to generate large-scale, realistic simulations (2,500 conversations across 500
profiles, plus 30,250 conversations across 50 tail profiles for H4) while maintaining the
complexity of individual interactions provides unprecedented opportunities to test theories
that depend on realistic communication patterns and adaptive behavior. By allowing re-
searchers to observe mechanisms like optimal stopping in a practical setting, this method-
ology opens new possibilities for economic research in domains where human behavior is
context-dependent and communication plays a central role. It offers a promising path for-
ward for both theoretical development and the design of practical AI systems.

5 Conclusion

This study models the interaction between human and AI financial advisors as a dynamic
optimal stopping game under two layers of uncertainty. We find that human advisors excel
at interpreting soft, subjective information and clarifying ambiguous investor goals, while
AI advisors provide unbiased, scalable recommendations but struggle to process unspoken
preferences. This “soft information gap” limits the efficiency of AI-driven advice in complex
decision-making contexts. Our results show that advisor value depends on the clarity of
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investor preferences. When goals are uncertain or evolving, human advisors’ interpretive
strengths can outweigh their incentive biases. Conversely, when preferences are well-defined,
unbiased AI advisors can match or outperform humans. Moreover, in contexts where human
advice is heavily biased, AI guidance offers a clear advantage.

This work contributes a theoretical framework that integrates strategic communication,
advisor incentives, and the role of soft information, extending classic models and comple-
menting recent empirical findings on robo-advisors and generative AI. By formalizing the
inefficiencies created by digitizing soft information, we highlight key trade-offs in advisory
relationships and set the stage for deeper integration of AI in finance.

A key methodological innovation of this study is the use of LLM simulations to opera-
tionalize and test our theoretical framework. By simulating realistic advisory interactions,
we demonstrate how LLMs can serve as scalable, controlled environments for theory valida-
tion and refinement. This approach not only bridges theoretical and empirical analysis but
also opens new avenues for using AI-driven simulations in behavioral finance and decision
sciences.

Practically, our findings support a hybrid advisory approach. Novice or uncertain in-
vestors may benefit from initial human interaction, while experienced clients with clear
goals can rely on AI platforms for efficient, unbiased advice. Enhancing AI systems with
better memory and context-handling could further reduce information loss. Policymakers,
meanwhile, should ensure that AI-driven advice remains transparent, unbiased, and aligned
with fiduciary standards.

Future research could explore hybrid human–AI models, adaptive AI systems with ex-
tended memory, and applications in other fields such as medical or legal advising. Our
framework provides a foundation for advancing the theory and practice of financial advice
in the age of AI.
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A Technical Appendices

A.1 Additional Details for Section 2.2

In this part, we provide omitted details for the communication with the LLM.

Derivation of Eq. (13) . Since pt(zt) = ezt

1+ezt
, Ito’s Lemma implies

dpt =
(

ezt

1 + ezt

)′

zt

dzt + 1
2

(
ezt

1 + ezt

)′′

zt

(dzt)2

= ezt

(1 + ezt)2 dzt + 1
2

ezt

(1 + ezt)2

(
1 − 2 ezt

1 + ezt

)
(dzt)2

=pt(1 − pt)
[ 1
σ2 (pt − 1

2)dt + 1
σ

dBt

]
+ 1

2pt(1 − pt)(1 − 2pt)
dt

σ2

=pt(1 − pt)
σ2 dBt.

The third equation uses the evolvement of zt in (12), (dzt)2 = (dBt)2

σ
and pt(zt) = ezt

1+ezt
.

Derivation of p̂t = E(ω = 1|dst−) (baseline). We use the following Binomial approxi-
mation of the process of Brownian motion. The investor observes the whole binomial tree
whereas the LLM updates its belief only based on the last signal. Specifically, The probability
that the particle goes up is

π = 0.5 + ω

2σ

√
∆t,

and the particle goes down is
1 − π = 0.5 − ω

2σ

√
∆t,

and the size of jump is
u = σ

√
∆t, d = −σ

√
∆t.

For a particle that starts from zero, we have

πu + (1 − π) d = (2π − 1) u = ω

σ

√
∆t × σ

√
∆t = ω∆t,

which means it has a drift of ω∆t.
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Suppose the particle goes up in the last round. The posterior belief of the LLM is

p̂t = π(ω = 1)p̂0

π(ω = 1)p̂0 + π(ω = 0)(1 − p̂0)
=

(
0.5 + 1

2σ

√
∆t
)

p̂0(
0.5 + 1

2σ

√
∆t
)

p̂0 + 0.5(1 − p̂0)
.

Under the continuous time setting where ∆t → 0, the above equation becomes p̂t =
lim∆t→0

(0.5+ 1
2σ

√
∆t)p̂0

(0.5+ 1
2σ

√
∆t)p̂0+0.5(1−p̂0)

= p̂0.

A.2 Proof of Lemma 1

Proof. The investor understands that the recommendation mL is based on the LLM’s belief
p̂ and satisfies

mL(p̂) = p̂θ1 + (1 − p̂)θ0. (31)

The investor chooses her optimal action a(mL) to solve

max
a

E[U(a, p, θ̃1, θ̃0)] = −pE[(a − θ̃1)2|mL] − (1 − p)E[(a − θ̃0)2|mL].

Her optimal action is

a(mL) = pE[θ̃1 | mL] + (1 − p)E[θ̃0 | mL]. (32)

From the investor’s perspective, θ̃1, θ̃0 and mL in (31) are normal random variables. Hence,
the conditional expectation of states given recommendation mL are

µθ1|m ≡ E[θ̃1 | mL] = µ1 + p̂

p̂2 + (1 − p̂)2

[
mL − p̂µ1 − (1 − p̂)µ0

]
, (33)

µθ0|m ≡ E[θ̃0 | mL] = µ0 + 1 − p̂

p̂2 + (1 − p̂)2

[
mL − p̂µ1 − (1 − p̂)µ0

]
. (34)

The investor’s expected utility given any recommendation mL is then

E[U(a(mL), p, θ̃1, θ̃0)|mL] = −a(mL)2 + 2a(mL)
[
pµθ1|m + (1 − p)µθ0|m

]
− pE[θ̃2

1|mL] − (1 − p)E[θ̃2
0|mL]

= −
[
p Var(θ̃1 | mL) + (1 − p) Var(θ̃0 | mL)

]
︸ ︷︷ ︸

MSE

−p(1 − p)(µθ1|m − µθ0|m)2.

The conditional expectations µθ1|m, µθ0|m are given in (33) and (34). The conditional variance
Var(θ̃1 | mL) = Var(θ̃1) − Cov(θ̃1,mL)2

Var(mL) = (1−p̂)2σ2
ϵ

p̂2+(1−p̂)2 and Var(θ̃0 | mL) = p̂2σ2
ϵ

p̂2+(1−p̂)2 . Now we take
expectation over mL(p̂) in (31) to calculate the investor’s expected utility when she seeks
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recommendation,

g(p, p̂) =E[E[U(a(mL), p, θ̃1, θ̃0)|mL]]

= − σ2
ϵ

p(1 − p̂)2 + (1 − p)p̂2

p̂2 + (1 − p̂)2 − p(1 − p)E
{

µ1 − µ0 + 2p̂ − 1
p̂2 + (1 − p̂)2

[
mL − p̂µ1 − (1 − p̂)µ0

]}

= − σ2
ϵ

p(1 − p̂)2 + (1 − p)p̂2

p̂2 + (1 − p̂)2 − p(1 − p)
[
(µ1 − µ0)2 + (2p̂ − 1)2σ2

ϵ

p̂2 + (1 − p̂)2

]
.

Note that g(p, p̂) is a quadratic function in p.

A.3 Proof of Proposition 2

Proof. The investor continues if p ∈ (p, p) and stops to seek final recommendation if p = p

or p.
Step 1. We solve for the value function in the continuation region in closed form. We rewrite
the differential equation in log-likelihood ratio z = ln p

1−p
, so that p(z) = ez

1+ez , 1 − p(z) =
1

1+ez . Note that

p′(z) = 1
z′(p) = 1

1
p

+ 1
1−p

= p(1 − p). (35)

Define W (z) ≡ V (p(z)). Then

Wz = V ′(p)p′(z) = V ′(p)p(1 − p), (36)

or equivalently V ′(p) = Wz

p(1−p) . Then second derivative

V ′′(p) = d

dp

[
Wz

p(1 − p)

]
= z′(p) d

dz

[
Wz

p(1 − p)

]
= 1

p2(1 − p)2 [Wzz − (1 − 2p)Wz] .

Hence, the differential equation (22) becomes

−c + λ(g(p) − W (z)) + 1
2σ2 [Wzz − (1 − 2p)Wz] = 0. (37)

Now we substitute W (z) = u(z)Ŵ (z) and choose u(z) to remove the Wz term in (37). Then

Wz = uzŴ + uŴz, Wzz = uzzŴ + 2uzŴz + uŴzz,

Using them in (37), we have:

−c + λ[g(p(z)) − uŴ ] + 1
2σ2

{
uŴzz + [2uz − (1 − 2p) u] Ŵz + [uzz − (1 − 2p(z))uz] Ŵ

}
= 0.
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To eliminate the Ŵz term, impose

2uz − (1 − 2p)u = 0 ⇔ up

u
= 1 − 2p

p′(z) = 1
2

(
1
p

− 1
1 − p

)
. (38)

Integrate w.r.t. p, we need to set

u(z) =
√

p(z)(1 − p(z)),

and then the differential equation becomes

Ŵzz +
[

uzz − (1 − 2p)uz

u
− 2λσ2

]
Ŵ + 2σ2

u
[λg(p) − c] = 0. (39)

From the definition of u function in (38), we know that uz

u
= 1−2p

2 . Then

d

dz

(
uz

u

)
= uzz

u
−
(

uz

u

)2
,

which implies the coefficient in front of Ŵ in (39) is a constant:

uzz

u
− (1 − 2p)uz

u
− 2λσ2 = p′(z) d

dp

(
uz

u

)
+
(

uz

u

)2
− (1 − 2p)uz

u
− 2λσ2

= p(1 − p) · (−1) +
(1 − 2p

2

)2
− (1 − 2p)2

2 − 2λσ2 = −1
4 − 2λσ2.

Therefore, with the substitution of z ≡ ln p
1−p

and Ŵ (z) ≡ W (z)√
p(z)(1−p(z)

= V (p(z))√
p(z)(1−p(z))

, the
original differential equation in (22) could be rewritten as

Ŵzz − (1
4 + 2λσ2)Ŵ + 2σ2[λg(p) − c] = 0.

Let γ =
√

1
4 + 2σ2λ. The homogeneous solution of the above differential equation is

Ŵhomo(z) = Aezγ + Be−zγ.

Hence, using ez = p
1−p

, the homogeneous solution of the original differential equation (22) is

Vhomo(p) = Whomo(p(z)) = u(p)Ŵhomo(z) = C1p
γ+ 1

2 (1 − p)−γ+ 1
2 + C2p

−γ+ 1
2 (1 − p)γ+ 1

2 .

Let U1 (p) ≡ pγ+ 1
2 (1 − p)−γ+ 1

2 and U2 (p) = p−γ+ 1
2 (1 − p)γ+ 1

2 denote the roots, and let
q0, q1, q2 denote the coefficients for stopping value g(p) = q0 + q1p + q2p

2 in (19). Conjecture
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the following particular solution

Vpart (p) = q (p) = g (p) − c

λ
+ 2q2

[
U1 (p)

∫ p

k1

U2 (s)
W (s)ds − U2 (p)

∫ p

k2

U1 (s)
W (s)ds

]
, (40)

where W (p) ≡ U1 (p) U ′
2 (p) − U ′

1 (p) U2 (p) is the Wronskian term, and k1, k2 are constants
with degree of freedom (they will be jointly determined with C1 and C2). Now we check that
the particular solution satisfies the ODE in (22); that is,

2λσ2

p2(1 − p)2

[
q (p) − g (p) − c

λ

]
= q′′ (p) . (41)

The left hand side is

2λσ2

p2(1 − p)2

[
q (p) − g (p) − c

λ

]
= 2λσ2

p2(1 − p)2 · 2q2

[
U1 (p)

∫ p

k1

U2 (s)
W (s)ds − U2 (p)

∫ p

k2

U1 (s)
W (s)ds

]
.

The right hand side is

q′′ (p) = 2q2 + 2q2

[
U ′

1 (p)
∫ p

k1

U2 (s)
W (s)ds + U1 (p) U2 (p)

W (p) − U ′
2 (p)

∫ p

k2

U1 (s)
W (s)ds − U2 (p) U1 (p)

W (p)

]′

= 2q2 + 2q2

[
U ′′

1 (p)
∫ p

k1

U2 (s)
W (s)ds + U ′

1 (p) U2 (p)
W (p) − U ′′

2 (p)
∫ p

k2

U1 (s)
W (s)ds − U ′

2 (p) U1 (p)
W (p)

]

= 2q2

[
U ′′

1 (p)
∫ p

k1

U2 (s)
W (s)ds − U ′′

2 (p)
∫ p

k2

U1 (s)
W (s)ds

]
.

Hence,

2λσ2

p2(1 − p)2 [q (p) − g (p)] − q′′ (p) =2q2

∫ p

k1

U2(s)
W (s)ds

[
2λσ2

p2(1 − p)2 U1(p) − U ′′
1 (p)

]

− 2q2

∫ p

k2

U1(s)
W (s)ds

[
2λσ2

p2(1 − p)2 U2(p) − U ′′
2 (p)

]
= 0.

The last inequality holds because U1(p) and U2(p) are the roots of the homogeneous part of
the ODE in (22).

In addition, the Wronskian term is a constant,

W (p) =
(1

2 − γ
)

(1 − p) −
(

γ + 1
2

)
p −

(
γ + 1

2

)
(1 − p) +

(
−γ + 1

2

)
p = −2γ.
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Therefore, the value function is

V (p) = g (p)− c

λ
−q2

γ

[
U1 (p)

∫ p

k1
U2 (s) ds − U2 (p)

∫ p

k2
U1 (s) ds

]
+C1 (k1, k2) U1 (p)+C2 (k1, k2) U2 (p) .

Step 2. We show that in the continuation region, V (p) − g(p) is symmetric around 1
2 , and

the optimal stopping thresholds satisfy p + p = 1.
To see this, we consider the following adjusted value function

v (p) = V (p) − g (p) , (42)

which captures the option value of waiting. When waiting is strictly optimal, v (p) > 0. We
rewrite the HJB in the continuation region, (22), and boundary conditions in terms of v.
Plugging V (p) = v (p) + g (p) in (22) we have

λv (p) = p2 (1 − p)2

2σ2 g′′ (p) − c + p2 (1 − p)2

2σ2 v′′ (p) .

Importantly, g(p) is a quadratic function of p so g′′ (p) is a constant.
First, note that both the flow benefit of waiting p2(1−p)2

2σ2 g′′ (p)−c and the volatility p2(1−p)2

2σ2

are larger when p is close to 1
2 and smaller when p is close to 0 or 1. Hence, we conjecture

that the principal continues if p ∈ (p, p) and stops to seek final recommendation if p = p or
p. The boundary conditions in terms of v(·) are

v(p) = 0, v′(p) = 0, v(p) = 0, v′(p) = 0.

Second, both the flow benefit of waiting p2(1−p)2

2σ2 g′′ (p) − c and the volatility p2(1−p)2

2σ2 are
symmetric for p around 0.5. Intuitively, the underlying θ = 0 and 1 indicates borrower type
(matching θ̃i) and are interchangeable. Therefore, p+p = 1. Also, the symmetry means that
there exists a critical upper bound learning cost c < c under which v(1

2) > 0 and the above
waiting solution holds.
Step 3. We specify k1 = k2 = 1

2 and show that C1 = C2. Note that for any p ∈ [0, 1],

U1 (1 − p) = U2 (p) , U2 (1 − p) = U1 (p) , (43)

U ′
1 (1 − p) = −U ′

2 (p) , U ′
2 (1 − p) = −U ′

1 (p) . (44)
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Let I1(p) ≡
∫ p

0.5 U1(s)ds and I2(p) ≡
∫ p

0.5 U2(s)ds. The two value matching conditions are

0 = V
(
p
)

− g
(
p
)

= − c

λ
− q2

γ

[
U1
(
p
) ∫ p

0.5
U2 (s) ds − U2

(
p
) ∫ p

0.5
U1 (s) ds

]
+ C1U1

(
p
)

+ C2U2
(
p
)

,

(45)

0 = V
(
1 − p

)
− g

(
1 − p

)
= − c

λ
− q2

γ

[
U1
(
1 − p

) ∫ 1−p

0.5
U2 (s) ds − U2

(
1 − p

) ∫ 1−p

0.5
U1 (s) ds

]
+ C1U1

(
1 − p

)
+ C2U2

(
1 − p

)
. (46)

Using (43) and (44) in (46),

0 = − q2

γ

[
U2
(
p
) ∫ 1−p

0.5
U1 (1 − s) ds − U1

(
p
) ∫ 1−p

0.5
U2 (1 − s) ds

]
+ C1U2

(
p
)

+ C2U1
(
p
)

=︸︷︷︸
t=1−s

− q2

γ

[
−U2

(
p
) ∫ p

0.5
U1 (t) dt + U1

(
p
) ∫ p

0.5
U2 (t) dt

]
+ C1U2

(
p
)

+ C2U1
(
p
)

= − C1U1
(
p
)

− C2U2
(
p
)

+ C1U2
(
p
)

+ C2U1
(
p
)

= (C1 − C2)
[
U2
(
p
)

− U1
(
p
)]

.

The second equality follows from changing integrand from s to t = 1 − s, and the third
equality uses Eq. (45). Since p ̸= 0.5 whenever the investor learns, we have U1(p) ̸= U2(p)
and so

C1 = C2 = C.

Step 4. We solve for the remaining unknowns C and p.

Let I1(p) ≡
∫ p

0.5 U1(s)ds and I2(p) ≡
∫ p

0.5 U2(s)ds. Using C1 = C2 = C, the value matching
conditions imply

C
(
p
)

=
c
λ

+ q2
γ

[
U1
(
p
)

I2
(
p
)

− U2
(
p
)

I1
(
p
)]

U1
(
p
)

+ U2
(
p
) . (47)

The smooth pasting condition then pins down p.

0 = V ′
(
p
)

− g′
(
p
)

= −q2

γ

[
U ′

1

(
p
)

I2
(
p
)

− U ′
2

(
p
)

I1
(
p
)]

+ C
(
p
) [

U ′
1

(
p
)

+ U ′
2

(
p
)]

. (48)

Using the expression of C
(
p
)

in Eq. (47) in (48), we have

d

dp

{ c
λ

+ q2
γ

[U1 (p) I2 (p) − U2 (p) I1 (p)]
U1 (p) + U2 (p)

}∣∣∣∣∣
p=p

= 0, where p ∈ (0, 0.5). (49)

Step 5. We argue that there exists a unique solution to the optimal stopping problem. To
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show this, we show that there exists a unique p ∈ (0, 0.5) that solves Eq. (49). Note that

sgn
{

d

dp

{ c
λ

+ q2
γ

[U1 (p) I2 (p) − U2 (p) I1 (p)]
U1 (p) + U2 (p)

}}

= sgn


q2

γ
(U ′

1I2 − U ′
2I1) (U1 + U2) −

[
c

λ
+ q2

γ
(U1I2 − U2I1)

]
(U ′

1 + U ′
2)︸ ︷︷ ︸

≡M(p)


, (50)

and we discuss the sign of M(p) over p ∈ [0, 0.5]. Recall that U1 (p) = pγ+ 1
2 (1 − p)−γ+ 1

2 , U2 (p) =
p

1
2 −γ (1 − p)γ+ 1

2 and I1 (p) =
∫ p

1
2

sγ+ 1
2 (1 − s)−γ+ 1

2 ds, I2 (p) =
∫ p

1
2

s
1
2 −γ (1 − s)γ+ 1

2 ds. Then we
have

U ′
1 (p) =

(
γ + 1

2

)(
p

1 − p

)γ− 1
2

−
(

−γ + 1
2

)(
p

1 − p

)γ+ 1
2

,

U ′
2 (p) =

(1
2 − γ

)(
p

1 − p

)−γ− 1
2

−
(

γ + 1
2

)(
p

1 − p

) 1
2 −γ

.

We evaluate these terms at the two endpoints p = 0 and 1
2 . Given that γ =

√
1
4 + 2σ2λ > 1

2 ,
we have U1 (0) = 0, U2 (0) = ∞, U ′

1(0) = 0 and U ′
2(0) = −∞. Also, U1 (0.5) = U2 (0.5) = 0.5,

U ′
1 (0.5) = 2γ and U ′

2 (0.5) = −2γ. Then we evaluate M(p) at these endpoints,

M(0) = −q2

γ
U ′

2(0)I1(0)U2(0) −
(

c

λ
− q2

γ
U2(0)I1(0)

)
U ′

2(0) = − c

λ
U ′

2(0) = ∞,

M(1
2) = 0.

We make then examine the monotonicity of M(p) over p ∈ [0, 0.5]. We calculate

M ′(p) =q2

γ
(U ′′

1 I2 − U ′′
2 I1 + 2γ) (U1 + U2) + q2

γ
(U ′

1I2 − U ′
2I1) (U ′

1 + U ′
2)

− q2

γ
(U ′

1I2 − U ′
2I1) (U ′

1 + U ′
2) −

[
c

λ
+ q2

γ
(U1I2 − U2I1)

]
(U ′′

1 + U ′′
2 )

=2q2 (U1 + U2) + q2

γ
(I1 + I2) [U ′′

1 U2 − U ′′
2 U1] − c

λ
(U ′′

1 + U ′′
2 )

=2q2 (U1 + U2) + q2

γ
(I1 + I2)

2σ2λ

p2 (1 − p)2 [U1U2 − U2U1] − c

λ

2σ2λ

p2 (1 − p)2 (U1 + U2)

=2 (U1 + U2)
[
q2 − cσ2

p2 (1 − p)2

]
,
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where the second equation follows because U1(p) and U2(p) are the roots of the homogeneous
ODE and so p2(1−p)2

2σ2 U ′′
i (p) = λUi(p) for i ∈ {1, 2}. Since U1(p) ≥ 0, U2(p) ≥ 0, the sign of

M ′(p) depends on q2 − cσ2

p2(1−p)2 and this term is increasing over p ∈ [0, 0.5].
There are two cases depending on the sign of q2 − cσ2

p2(1−p)2 at p = 0.5. First, if it’s
negative, that is q2

cσ2 ≤ 16, M ′(p) < 0 for p ∈ [0, 0.5] and so M(p) is decreasing in this region.
Combined with M(0) = ∞ and M(0.5) = 0 at the two endpoints, M(p) is always positive
over [0, 0.5). Hence, there is no solution for p, which satisfies M(p) = 0 for p ∈ (0, 0.5).
Second, if q2

cσ2 > 16, M(p) first decreases and then increases over [0, 0.5]. Combined with
M(0) = ∞ and M(0.5) = 0 at the two endpoints, M(p) crosses zero only once over [0, 0.5),
which pins down the unique solution of p.

To summarize, in the continuation region, the value function is

V (p) = g(p)− c

γ
−q2

γ
[U1(p)I2(p) − U2(p)I1(p)]+

c
λ

+ q2
γ

[
U1
(
p
)

I2
(
p
)

− U2
(
p
)

I1
(
p
)]

U1
(
p
)

+ U2
(
p
) ·[U1(p) + U2(p)] ,

(51)
where p ∈ (0, 0.5) is uniquely determined by (49) if q2

cσ2 < 16, U1(p) = pγ+ 1
2 (1 − p)−γ+ 1

2

and U2(p) = p
1
2 −γ (1 − p)γ+ 1

2 . The coefficients are q2 = (µ1 − µ0)2 + (2p̂−1)2σ2
ϵ

p̂2+(1−p̂)2 and γ =√
1
4 + 2σ2λ.

A.4 Proof of Proposition 3

Proof. We find the optimal p̂.
1. Stopping region. Introduce x(p̂) = p̂

1−p̂
. We can rewrite the investor’s stopping value

in (19) as

g(p, p̂) = −σ2
ϵ

p(1 − p̂)2 + (1 − p)p̂2

p̂2 + (1 − p̂)2 − p(1 − p)
[
(µ2

1 − µ0)2 + (2p̂ − 1)2σ2
ϵ

p̂2 + (1 − p̂)2

]

= −σ2
ϵ

p + (1 − p)
(

p̂
1−p̂

)2

(
p̂

1−p̂

)2
+ 1

− p(1 − p)

(µ1 − µ0)2 + σ2
ϵ

( p̂
1−p̂

− 1)2(
p̂

1−p̂

)2
+ 1


= −σ2

ϵ

2p − 1
x2 + 1 − σ2

ϵ (1 − p) − σ2
ϵ p(1 − p)

[(
µ1 − µ0

σϵ

)2
+ 1 − 2x

x2 + 1

]
.

Take derivative with respect to x,

Sgn
{

∂g(x, p)
∂x

}
= Sgn

{
(2p − 1) x + p(1 − p)

(
−x2 + 1

)}
.
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The first-order condition for the optimal x(p) then implies

−p (1 − p) x2 + (2p − 1) x + p (1 − p) = 0.

There are two roots,
x1 = −1 − p

p
, x2 = p

1 − p
,

and we take the positive root x∗(p) = p
1−p

. Given the definition of x = p̂
1−p̂

, we know that in
the stopping region p /∈ [p, p],

p̂∗(p) = p.

2. Continuation region. We rewrite (51) to highlight its dependence on p̂, noting that
q2(p̂) is a function of p̂ and p is affected by q2(p̂):

V (p; p̂) =g(p; p̂) − c

γ
− q2(p̂)

γ
[U1(p)I2(p) − U2(p)I1(p)]

+
c
λ

+ q2(p̂)
γ

[
U1
(
p
)

I2
(
p(p̂)

)
− U2

(
p(p̂)

)
I1
(
p(p̂)

)]
U1
(
p(p̂)

)
+ U2

(
p(p̂)

) · [U1(p) + U2(p)] (52)

Introduce H(p) ≡ U1(p)I2(p) − U2(p)I1(p) and S(p) ≡ U1(p) + U2(p). Take derivative with
respect to p̂,

dV (p; p̂)
dp̂

=dg(p; p̂)
dp̂

− q′
2(p̂)
γ

H(p) + q′
2(p̂)
γ

H(p(p̂))
S(p(p̂)) · S(p) + d

dp


c
λ

+ q2(p̂)
γ

H(p(p̂))
S(p(p̂))

︸ ︷︷ ︸
=0, (Envelope Theorem)

·S(p) ·
dp(p̂)

dp̂

=dg(p; p̂)
dp̂

− q′
2(p̂)
γ

H(p) + q′
2(p̂)
γ

H(p(p̂))
S(p(p̂)) · S(p), (53)

where we used the Envelope Theorem so that the indirect effect through p is zero (see (49).)
We can rewrite g(p; p̂) in (19) as

g (p; p̂) = −σ2
ϵ

p + (1 − p)
(

p̂
1−p̂

)2

(
p̂

1−p̂

)2
+ 1

− p(1 − p)
[
(µ1 − µ0)2 +

( p̂
1−p̂

− 1)2σ2
ϵ(

p̂
1−p̂

)2
+ 1

]

= −σ2
ϵ (1 − p) − σ2

ϵ

2p − 1
x(p̂)2 + 1 − p(1 − p)

[
(µ1 − µ0)2 + σ2

ϵ − 2x(p̂)σ2
ϵ

x(p̂)2 + 1

]
︸ ︷︷ ︸

q2(p̂)

. (54)
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Then

dg(p; p̂)
dp̂

= 2σ2
ϵ

(1 + p̂)2(x(p̂)2 + 1)2 ·
[
(2p − 1)x(p̂) − p(1 − p)(x(p̂)2 − 1)

]
,

q′
2(p̂) = 2σ2

ϵ

(1 + p̂)2(x(p̂)2 + 1)2 · (x(p̂)2 − 1).

Using the above results in (53),

dV (p; p̂)
dp̂

= 2σ2
ϵ

(1 + p̂)2(x(p̂)2 + 1)2 ·
{

(2p − 1)x(p̂) − p(1 − p)(x(p̂)2 − 1) − x(p̂)2 − 1
γ

[
H(p) −

H(p(p̂))
S(p(p̂)) · S(p)

]}
.

(55)
Optimal p̂ for p0 = 0.5. In this case,

dV (p; p̂)
dp̂

= 2σ2
ϵ

(1 + p̂)2(x(p̂)2 + 1)2 · x(p̂)2 − 1
γ

·
[
−γ

4 +
H(p(p̂))
S(p(p̂))

]
. (56)

We intend to show that −γ
4 + H(p(p̂))

S(p(p̂)) < 0 for any p̂. Note that H(p)
S(p) decreases in p when

p ∈ (0, 0.5):
(

H(p)
S(p)

)′

=(U ′
1I2 − U ′

2I1)(U1 + U2) − (U1I2 − U2I1)(U ′
1 + U ′

2)
(U1 + U2)2

=(U ′
1U2 − U1U

′
2)(I1 + I2)

(U1 + U2)2 = 2γ(I1 + I2)
(U1 + U2)2 < 0.

The inequality holds because I1 =
∫ p

0.5 U1(s)ds < 0 and I2 =
∫ p

0.5 U2(s)ds < 0. Hence, for any
p̂ and resulting p ∈ (0, 0.5), we have

H(p(p̂))
S(p(p̂)) <

H(0)
S(0) =

∫ 1
2

0
sγ+ 1

2 (1 − s) 1
2 −γds.

In addition, we can show that H(0;γ)
G(0;γ) decreases in γ for γ =

√
1
4 + 2σ2λ > 1

2 . To see this,

d

dγ

[∫ 1
2

0
sγ+ 1

2 (1 − s) 1
2 −γds

]
=
∫ 1

2

0
sγ+ 1

2 (1 − s) 1
2 −γ ln s

1 − s
ds < 0.

The inequality holds because for s ∈ (0, 1
2), we have 0 < s

1−s
< 1 and ln s

1−s
< 0. This means

that ∫ 1
2

0
sγ+ 1

2 (1 − s) 1
2 −γds <

∫ 1
2

0
sds = 1

8 .
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As a result, the key term in (56) is negative,

−γ

4 +
H(p(p̂))
S(p(p̂)) < −γ

4 +
∫ 1

2

0
sγ+ 1

2 (1 − s) 1
2 −γds < −γ

4 + 1
8 < 0.

For any p̂ ∈ (0, 1
2), we have x = p̂

1+p̂
< 1 and x2 − 1 < 0, so the derivative in (56) is

always positive—that is, value improves as p̂ increases in (0, 1
2). For any p̂ ∈ (1

2 , 1), we have
x = p̂

p̂+1 > 1 and x2 −1 > 0, so the derivative in (56) is always negative—value decreases as p̂

increases in this region. Therefore, when p0 = 0.5, the optimal LLM training is p̂∗(0.5) = 0.5.

Option value of learning. Note that (55) can be decomposed as

dV (p; p̂)
dp̂

= dg(p; p̂)
dp̂

− 2σ2
ϵ S(p)

γ(1 + p̂)2(x(p̂)2 + 1)2︸ ︷︷ ︸
+

·
[
x(p̂)2 − 1

]
︸ ︷︷ ︸
+(−) if p̂>(<)0

[
H(p)
S(p) −

H(p(p̂))
S(p(p̂))

]
. (57)

The first term maximizes g(p; p̂—the optimal LLM training if the investor immediately seeks
recommendation, and the second term corresponds to the option value of learning.

We have shown in the previous part that H(p)
S(p) decreases in p when p ∈ (0, 0.5). Similarly,

considering the sign flip of I1 + I2 > 0 when p ∈ (0.5, 1), we know that H(p)
S(p) increases in p

when p ∈ (0.5, 1). Hence, in the continuation region where p ∈ (p, p), we have

H(p)
S(p) −

H(p(p̂))
S(p(p̂)) < 0.

In addition, since x(p̂) = p̂
1−p̂

, we have x(p̂)2 − 1 > 0 if p̂ > 0.5 and x(p̂)2 − 1 < 0 if p̂ < 0.5.

Taken together, we have p̂∗(p0) > p0 if p0 ∈ (0.5, p(p̂)) and p̂∗(p0) < p0 if p0 ∈ (p(p̂), 0.5).
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B Appendices for Empirical Exercise

B.1 Hypotheses Testable via Observational Data

The second set of hypotheses involves predictions that can be examined using real-world
observational data, such as records from a financial platform offering both human and LLM-
based advising. In our context, Yingmi Wealth’s Qieman (meaning "Hold On"), which is an
intelligent investment advisory platform in China, provides a useful example: some investors
on the platform may choose to consult a human financial advisor, while others use an AI
advisor. By leveraging data on these choices, alongside investor characteristics and outcomes,
we can potentially test how the model’s mechanisms play out in practice.

H4 (Preference Uncertainty and Advisor Choice): Investors who are more uncer-
tain about their own financial goals or risk preferences are more likely to choose a human
advisor over an LLM-based advisor.

The theoretical setup suggests that when investors are unsure about their preferences,
such as unclear risk tolerance or retirement goals, human advisors may be better equipped to
interpret nuanced soft information through interactive conversation compared to AI-based
tools. This advantage is further supported by the model’s ability to account for uncertainty
in understanding investor preferences, which suggests that human advisors are more effective
in dynamically clarifying the needs of investors with less self-awareness.

To test this hypothesis, we propose analyzing observational data on advisor selection
based on investors’ self-reported uncertainty. One approach is to use survey or onboarding
data to construct a metric of ex ante preference uncertainty. This metric could be derived
from variability in responses to risk tolerance questions or the absence of a clear investment
goal. Using such data, a regression or discrete-choice model could be estimated to determine
the probability of selecting a human advisor versus an AI advisor as a function of this
uncertainty metric. The prediction is that investors with greater preference uncertainty will
exhibit a significantly higher likelihood of opting for human advisors.

H5 (Extreme Investor Types and AI Adoption): Investors with extreme initial risk
profiles are more likely to opt for the LLM advisor, especially those whose risk assessment
falls in the very conservative or very aggressive ends of the distribution.

The intuition from the model suggests that for extreme investor types, those who are
either highly risk-averse or highly risk-seeking, the potential downside from any misalignment
in the AI’s recommendations is relatively smaller. This arises because even if the AI’s
recommendations are slightly off, they will still be close to the investor’s true preferences or
optimal strategy. On the other hand, human advisors with biases—such as those stemming
from sales commissions—introduce additional "cheap-talk" costs. This inherent impartiality
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of the LLM makes its advice more appealing to investors situated at the spectrum’s extremes.
To test this hypothesis, empirical analysis can be conducted by studying how investors’

risk profiles correlate with their choice of advisor. Specifically, using data on initial risk
scores, such as scores derived from risk assessment questionnaires, we can examine whether
investors who fall into the lowest or highest quantiles of risk tolerance are more likely to opt
for the LLM over human advisors. A probit or logit regression can be used where the decision
to adopt the LLM is regressed on indicators for "very low risk tolerance" and "very high risk
tolerance," controlling for other relevant factors. Positive coefficients on these indicators
would support the hypothesis.

H6 (Commission Incentives and Advisor Choice): The adoption of the LLM
advisor will be higher in settings where human financial advisors are paid on commission, as
opposed to a fee or salary basis.

The model suggests that when human advisors have incentives to influence clients, such
as earning commissions from selling specific products, their advice becomes more biased
and less credible. In such situations, the informational value of human advisors’ cheap-talk
messages decreases, leading investors to favor the unbiased AI advisors. To test this theory,
researchers could explore variations in compensation structures either across different regions
or over time. For example, comparing adoption rates of LLM advisors in settings where some
branches of a financial platform rely mainly on commission-based pay while others use fixed
salaries.

A regression analysis can be employed with the proportion of investors opting for AI
advisors as the dependent variable. The primary independent variable would measure the
strength of commission-based incentives for human advisors. It is expected that stronger
commission incentives or a shift toward a commission-heavy compensation model would cor-
relate with increased AI advisor adoption. Establishing that investors choose LLM advisors
significantly more often in high-commission contexts would offer evidence supporting the
hypothesis.

H7 (Investor Experience and Advisor Performance): Among more experienced
or financially sophisticated investors, those who effectively know their type with greater
precision, the performance gap between the LLM and a human advisor is smaller and may
even reverse in favor of the LLM.

The idea is that experienced investors can convey their objectives and constraints more
clearly or already understand them well, so a human advisor’s ability to uncover soft infor-
mation becomes less critical. According to the model, when the investor’s type is already
known or obvious, the human advisor’s traditional edge in interpreting the investor’s needs
vanishes, leaving only the downside of the human’s potential bias versus the AI’s objectiv-
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ity. In such cases, the neutral LLM advisor could perform just as well or better in aligning
recommendations with the investor’s true preferences.

To test this hypothesis, observational data can be analyzed, focusing on variables related
to investor experience, such as years of investment experience, trading volume, or financial
literacy scores. This data would also need measures of advice outcomes, like realized portfolio
returns, risk-adjusted performance, or consistency with stated goals. An empirical strategy
could involve a regression analysis, where an interaction term between investor experience
and advisor type measures the relative effectiveness of AI and human advisors. Specifically,
the hypothesis predicts that the interaction term (Experience × LLM) will have a positive
coefficient in the regression, indicating that the performance of AI advisors improves as
investor experience increases.

B.2 Vanguard Questionnaire

1. Once you start withdrawing money from your investments, you plan to spend it over
a period of...

(a) 2 years or less

(b) 3-5 years

(c) 6-10 years

(d) 11-15 years

(e) More than 15 years

2. When making a long-term investment, you plan to keep the money invested for...

(a) 1-2 years

(b) 3-4 years

(c) 5-6 years

(d) 7-8 years

(e) More than 8 years

3. When it comes to investing in stock or bond mutual funds or ETFs (or individual
stocks or bonds) you would describe yourself as...

(a) Very inexperienced

(b) Somewhat inexperienced
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(c) Somewhat experienced

(d) Experienced

(e) Very experienced

4. You plan to begin taking money from your investments in...

(a) 1 year or less

(b) 1-2 years

(c) 3-5 years

(d) 6-10 years

(e) 11-15 years

(f) More than 15 years

5. Your current and future income sources (for example, salary, social security, pensions)
are...

(a) Very unstable

(b) Unstable

(c) Somewhat stable

(d) Stable

(e) Very stable

6. From September 2008 through October 2008, bonds lost 4%. If you owned a bond
investment that lost 4% in two months, you would...

(a) Sell all the remaining investment

(b) Sell a portion of the remaining investment

(c) Hold onto the investment and sell nothing

(d) Buy more of the remaining investment

7. The below table shows the greatest 1-year loss and the highest 1-year gain on 3 different
hypothetical investments of $10,000.

• Investment A (gain $593; loss -$164)

• Investment B (gain $1,921; loss -$1,020)

• Investment C (gain $4,229; loss -$3,639)
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Given the potential gain or loss in any 1 year, you would invest your money in...

(a) minimal volatility

(b) moderate volatility

(c) most volatility

8. During market declines, you tend to sell portions of your riskier assets and invest the
money in safer assets. (R)

(a) Strongly disagree

(b) Disagree

(c) Somewhat agree

(d) Agree

(e) Strongly agree

9. You would invest in a mutual fund or ETF (exchange-traded fund) based solely on a
brief conversation with a friend, co-worker, or relative. (R)

(a) Strongly disagree

(b) Disagree

(c) Somewhat agree

(d) Agree

(e) Strongly agree

10. From September 2008 through November 2008, stocks lost over 31%. If you owned a
stock investment that lost about 31% in three months, you would...

(a) Sell all the remaining investment

(b) Sell a portion of the remaining investment

(c) Hold onto the investment and sell nothing

(d) Buy more of the remaining investment

11. Generally, you prefer an investment with little or no ups and downs in value, and you
are willing to accept the lower returns these investments may make. (R)

(a) Strongly disagree

(b) Disagree
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(c) Somewhat agree

(d) Agree

(e) Strongly agree

Note: Questions marked with (R) are reverse-scored items where higher numerical re-
sponses indicate lower risk tolerance.
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