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1 Introduction

The proliferation of artificial intelligence (AI) in advisory roles—spanning financial plan-
ning, healthcare, and education—has created a compelling paradox in professional services.
While AT advisors demonstrate objective advantages including elimination of conflicts of in-
terest, scalable delivery, and performance comparable to human professionals, their market
penetration remains surprisingly limited. In financial markets, the paradox is especially pro-
nounced: although robo-advisors create portfolios with historical returns comparable to those
of professional benchmarks (Fieberg et al., 2024) and assist seasoned investors in minimizing
behavioral errors (Guo et al., 2022), they account for less than 2% of global assets under man-
agement as of 2025 and are expected to experience modest growth in the near future.! This
limited adoption occurs even as traditional human advisors face well-documented incentive
problems—commission-driven recommendations, product pushing, and strategic exploita-
tion of client biases (Bolton et al., 2007; Carlin and Manso, 2011; Chalmers and Reuter,
2020). The persistence of potentially biased human advisors over unbiased Al alternatives
suggests that current Al systems cannot replicate crucial aspects of human advisory value.

This missing value lies in the processing of “soft information”™—the subjective, often
unarticulated preferences, constraints, and goals that clients themselves may not effectively
communicate or even fully understand themselves (Liberti and Petersen, 2019). Unlike pre-
diction tasks involving external outcomes such as asset returns, advisory excellence requires
understanding the individual client’s internal landscape of uncertainty. A human advisor
can navigate this uncertainty through extended dialogue, using probing questions, analogies,
and examples to help clients communicate their own preferences. However, large language
models (LLMs) face fundamental architectural constraints that create a novel form of infor-
mation loss distinct from the strategic distortions in human advising. When clients cannot
articulate their needs through effective prompts, and when LLMs’ limited memory prevents
synthesis across extended conversations, the result is generic recommendations that overlook
the nuanced requirements underlying high-stakes decisions.

This paper develops a formal framework for Al-based advising via LLMs, and validates
model predictions through LLM-driven simulations that generate multi-turn, role-structured
conversations. Alongside standard fundamental uncertainty in financial advising, we intro-
duce “preference uncertainty” to capture soft information, and model the communication
of soft information as the investor’s optimal stopping problem with Brownian information
flow. The comparison between human versus LLM-based advisors is clear. Human advisors

efficiently elicit soft information, but their misaligned incentives lead to strategic misreport-

1See analysis in https://resoinsights.com/insight /robo-advisors-in-wealth-management,/



ing and information loss about asset fundamentals as in the standard cheap talk models
(Crawford and Sobel, 1982). By contrast, LLM-based advisors are unbiased, yet we identify
a novel source of information loss stemming from the frictions inherent in digitizing soft
information.

In the model, the investor has a quadratic loss utility function and faces two layers of
uncertainty. The first—uncertainty about the fundamental state of the world—is standard
in the financial advising literature. The second, which is novel in this paper, is uncertainty
about the investor’s own objective, which we call “preference uncertainty,” and it captures
soft information. Specifically, the investor does not know which of the fundamental state to
match (preference uncertainty); for either potential states, she does not observe its realization
(fundamental uncertainty). Hence, the investor herself is “confused”: she does not fully
know her preferences ex ante and can learn them through consultation with an advisor. For
example, while she may know her income status and lifetime goals, she lacks knowledge of
personal finance and is unaware how such information is related to her investment objectives.

We include the case of consulting a human advisor for comparison. Human advisors can
uncover soft information through interactive dialogue—using probing questions, analogies
and examples to help clients communicate their own preferences. In our model, the “pref-
erence uncertainty” is eliminated with a human advisor: after an initial consultation, the
investor learns her preference and is matched with a specialist tailored to her investment
goals. However, the human advisor is biased—e.g., toward generating commission fees—and
thus inflates the value of asset fundamentals. As in standard cheap talk models(Crawford
and Sobel, 1982), this strategic distortion limits how much credible information the advisor
can transmit, resulting in information loss about fundamental values.

In contrast, the LLM advisor is biased, but digitizing soft information is difficult due to
two reasons. First, by its nature, digitization inevitably incurs information loss—a challenge
that is amplified when the investor herself is uncertain. Second, the limited memory of LLMs
prevents synthesis across extended conversations, even though each individual prompt is
informative. The Transformer architecture underlying most LLMs scales quadratically with
input length—which is the cost of LLMs’ intelligence, but makes long-context processing
computationally costly and often impractical. As a result, LLMs typically operate within
short, stateless context windows, with knowledge reset after each interaction.

We model the communication with the LLM as the investor’s optimal stopping problem
with Brownian information flow. Before seeking a recommendation (stopping), the investor
discusses her situation, generating public signals about her underlying preferences that she
also comes to learn. The LLM, however, only partially learns about these preferences due

to its limited memory. In the baseline case, we assume the LLM has one-shot memory and



updates its belief using only the most recent signal, which, in the the continuous-time limit,
its belief remains fixed at the pretrained prior. We also consider an extension in which
the LLM randomly misses each signal. The investor decides when to stop the conversation
and seek recommendation, weighing the informational value of continued learning against
information costs.

When the investor stops communication, she receives a recommendation from the LLM.
Aware that it reflects the LLM’s belief, she chooses an action based on her own posterior
belief, partially correcting for the LLM’s misunderstanding. The investor’s stopping value
depends on both the residual preference uncertainty and the residual fundamental uncer-
tainty. Because of communication costs and the LLM’s limited memory, soft information is
never fully transmitted. Moreover, although the LLM is unbiased, fundamental uncertainty
remains due to unresolved preference uncertainty. Uncertain about the client’s preferences,
the LLM generates recommendations for an average client through a black-box process that
offers little transparency about the underlying states. This output serves only as a noisy
signal of the investor’s preferred fundamental state. Taken together, when consulting an
LLM, information loss also arises essentially from the inefficiency in communicating soft
information.

We solve the investor’s optimal communication policy in closed form for the baseline
model. In equilibrium, the investor follows a threshold strategy: she continues interacting
with the LLM while her belief about her preference remains within an intermediate range
and stops once she becomes sufficiently confident—either above an upper threshold or below
a lower one. This policy reflects a trade-off between the benefit of continued learning about
her own objective and information costs.

The model yields rich comparative statics that illuminate when AI advising is more or
less effective. When the LLM partially learns from the communication, the investor engages
in a deeper communication and chooses more extreme stopping thresholds. We show that
the investor communicates less when the cost of interaction is high or when the variance of
her preference is small, leading to earlier stopping and greater information loss. The investor
communicates longer when she faces substantial uncertainty— when communication adds
the most value. However, her resulting value from Al advising is still low. We also find
that an LLM model that is trained for more specialized clients induces more learning, while
increasing fundamental uncertainty reduces overall payoff but does not affect the learning
region. These patterns underscore that the inefficiencies in Al advising stem more from
frictions in digitizing soft information than from errors in forecasting hard fundamentals.

We derive a set of testable implications that connect the model’s primitives to observable

advising behavior and outcomes. For clarity, we organize hypotheses into two groups: those



we can evaluate in controlled LLM-based simulations and those that require observational
field data. In the paper we focus on three simulation-testable hypotheses. H1 posits that
the primary value of interacting with an LLM advisor is that investors learn about their own
initially uncertain preferences; the LLM’s recommendation may remain generic, but dialogue
helps investors reduce “preference uncertainty” and choose portfolios closer to their true
objectives. H2 predicts that higher time costs induce earlier termination of the conversation,
yielding less tailored portfolios. H3 predicts that giving the LLM persistent access to memory
improves recommendation quality and narrows the gap with a human advisor.

We complement the theory with prompt-based LLM simulations that generate multi-
turn, role-structured conversations approximating real-world advisory exchanges. Investor
“ground truth” comes from the 11-question Investor Questionnaire provided by Vanguard; we
simulate n = 500 profiles (fixed seed), obtain each profile’s rule-based “optimal” stock/bond
allocation, and use these as benchmarks in evaluation. The advisor is implemented with
OpenAl’'s GPT-5 under strict prompting. We compare a memoryless advisor, which is fed
only the most recent Q&A and thus approximates fixed priors due to context-length lim-
its, with a memory-augmented advisor that can use full chat history, and a full-information
counterfactual that observes the complete profile. Conversations conclude according to an
optimal stopping rule, modeled as a 0.10 exogenous probability of termination per round.
The investor assesses the costs and benefits in each round and may choose to end the con-
versation early, with a maximum of eleven questions permitted.

Our findings, drawn from 2,500 conversations (500 profiles each undergoing 5 interac-
tions), reveal several key patterns. First, supporting H1, it’s clear that the act of interacting
itself leads to most of the observed improvements: accuracy rises by 14.1 percentage points
even before any specific recommendations, and by 15.7 points afterward. Fach additional
round of exchange adds about 1.03 points to accuracy, while every extra word contributes
roughly 0.017 points. Second, in line with H2, we find that ending conversations prema-
turely—outside the advisor’s control-—reduces accuracy by around 2.62 points. Even when
accounting for total rounds, this drop remains substantial at about 0.96 points, indicating
a real penalty for impatience. Finally, as H3 predicts, access to memory significantly boosts
recommendation quality: the system works best when it has full access to information,
performs next best with full memory, and does worst with no memory at all.

Methodologically, this paper introduces an innovative approach to testing economic the-
ory by complementing our analytical framework with prompt-based LLM simulations. This
technique allows us to generate dynamic, multi-turn conversations that approximate real-
world advisory exchanges, bridging the critical gap between theoretical rigor and empirical

realism. Unlike traditional laboratory experiments or analytical models, these simulations



enable the direct observation of complex mechanisms, such as information acquisition, belief
updating, and optimal stopping, as they unfold within a controlled yet realistic interactive
setting. Although recent literature has begun to explore the potential of using LLMs as
economic agents to study behavioral patterns and simulate empirical regularities in human
decision-making (Horton, 2023; Ouyang et al., 2024), to the best of our knowledge, we are
the first to leverage LLM-driven simulations explicitly as a tool for testing economic theories.
This approach opens new possibilities for economic research in domains where communica-
tion and context-dependent human behavior play a central role, offering a promising path

for validating theoretical predictions.

Literature. This paper contributes to two rising strands of research: Artificial intelli-
gence in financial advising, and the technology trend that transforms soft information into
hard data. More broadly, theoretical research on Al technologies has primarily focused on
their effects on labor (e.g., Ide and Talamas, 2024), while this paper examines their specific

application in providing information within advisory roles.?

Al Advising. We build on classic cheap talk and financial advising models and introduce
preference uncertainty to capture soft information. We highlight the key features of Al
advisors by comparing them with human advisors, who are misaligned a la the classic cheap
talk (Crawford and Sobel, 1982). This seminal framework is later applied to analyst settings
where reputational and underwriting incentives drive distorted advice—see Bénabou and
Laroque, 1992; Ottaviani and Sgrensen, 2006; Riidiger and Vigier, 2019.3 Our paper explores
AT advisors as a new alternative and identifies their limitations: while unbiased, Al systems
face challenges in interpreting soft, contextual information.

Our findings contribute to the growing literature on financial technology and Al-driven
advisory services, extending the review by Mo and Ouyang (2025). Prior work shows that
robo-advisors can improve investor outcomes: D’Acunto et al. (2019) find better diversifi-
cation and reduced behavioral biases, while Rossi and Utkus (2024) report improved index-
ing, Sharpe ratios, and lower fees, especially for under-diversified investors. Yet challenges
remain. Chak et al. (2022) show that even when robo-advice enhances debt choices, low al-
gorithmic trust can limit uptake. Similarly, Andries et al. (2024) find that human advisors’
effectiveness varies with available information. Recent LLM advances offer new potential:
Lu et al. (2023) and Fieberg et al. (2024) show LLMs can generate effective, personalized

investment advice. Field evidence from Guo et al. (2022) finds experienced, risk-averse in-

2Theoretical research on Al in finance is still emerging. For example, Chen and Han (2024) show super-
vised Al intensifies agency conflicts.

3Cheap talk is also applied in corporate-governance settings where boards or proxy advisors offer non-
binding recommendations (e.g., Levit and Malenko, 2011; Malenko and Malenko, 2019).



vestors benefit most from conversational Al advisors. Building on this, our paper develops
a theoretical model of Al vs. human advising, validated through prompt-based simulations
where an LLM engages in iterative dialogue with an investor who chooses when to stop.
This raises the question of whether human experts still offer distinct value in an era
of automation. While robo-advisors excel at technical tasks, human advisors provide com-
plementary “soft” services like emotional support and trust-building, which aid prudent
decision-making (Linnainmaa et al., 2018; Gennaioli et al., 2015). Human discretion re-
mains valuable: Costello et al. (2020) show it improves outcomes by incorporating private
context, and Greig et al. (2024) find that hybrid platforms enhance investor retention and
confidence. Similarly, Cao et al. (2024) find that while Al excels in forecasts, humans out-
perform in tasks needing institutional insight, with combined approaches performing best in
uncertain, data-scarce settings. Our findings reinforce that human advisors play a comple-

mentary role, especially where nuance, context, and trust matter.

Hardening soft information. Our paper is related to the literature of soft versus hard infor-
mation, as well as the rise of Big Data and machine learning technologies that transform soft,
subjective information into hard, objective data. The literature on soft vs. hard information
(e.g., Stein, 2002; Liberti and Petersen, 2019) emphasizes that hard information is verifiable
and thus transferable within organizations, while soft information is often non-verifiable and
modeled as cheap talk (e.g., Bertomeu and Marinovic, 2016; Corrao, 2023). Recent advances
in Big Data and Al have made it possible to digitize even contextual, traditionally soft in-
formation. He et al. (2024) examines this technology trend in the context of credit market
competition. In our paper, investor communication with the LLM is exactly the process that
hardens a fraction of the soft information. However, we emphasize that LLMs face memory
constraints that limit their ability to fully process and transform soft information.

The remainder of the paper proceeds as follows. Section 2 introduces the model. Section
3 characterizes equilibrium under human advising and the equilibrium under Al advising
separately. Section 4 presents our empirical analysis. Section 5 concludes and discusses

practical and policy implications as well as avenues for future research.

2 The Model

A decision maker seeks advice from a better informed advisor—either a human or an Al
advisor (large language model, or LLM)—before taking action. To fix ideas, we use the
context of financial advising throughout the paper and refer to the decision maker as the

“investor.” However, the model applies to a broad range of advisory applications.



2.1 Agents

We first introduce the objectives of all agents, then describe their decision-making given
their information. The investor’s dynamic communication with the LLM will be separately

introduced in Section 2.2.

2.1.1 Investor.

As in canonical models, we build on the cheap talk framework (Crawford and Sobel, 1982)
to model the problem with the human advisor. The key innovation here is modeling the
core friction in Al advising as the communication of soft information. To capture this, on
top of the standard uncertainty about fundamental states, we introduce a second layer of
uncertainty to capture soft information: the investor does not fully understand her needs
or the optimization problem, which we refer to as “preference uncertainty.” For example,
the investor could be unsure about her risk appetite or how to tailor investments given the
number of years until her retirement. Even if she observes the asset fundamentals perfectly
(no uncertainty about fundamental states), she may still choose an undesirable portfolio
allocation.

To characterize this “preference uncertainty” in the simplest way, we assume that the
investor has a quadratic loss utility function and matches her action a with an unobservable
fundamental state, but she does not what fundamental state to match—either ; or 6,. That

is, she is unsure whether her objective function is
—]E(CL — 91)2,

or

—]E(a — éo)Q.

In addition, #; and 6, are independent normal random variables whose realizations are un-

observable to the investor:
él NN(MDOE)? éONN(/'I’(]aU?)u

where p; is the mean of 6; and o2 is the variance of 0; for i € {1,0}. Throughout the paper,
we use 0; and 6 to denote the random variables, and 6; () to denote a specific realization.

Hence, the investor’s utility function reflects two layers of uncertainty: preference un-
certainty and fundamental uncertainty. We introduce w € {1,0} to refer to the investor’s

underlying preference: w = 1 for 6, and w = 0 for f,. Fundamental uncertainty means



that, for each preference w € {1,0}, the investor does not observe the realization of the
corresponding fundamental state 6;,—this is also the standard uncertainty in the literature.

We interpret preference uncertainty as soft information, and refer to the two terms in-
terchangeably in the paper. In the baseline example of financial advising, the investor may
know her income status and general risk appetite in daily life but does not know how to
translate this soft information into portfolio goals. More broadly, this situation arises when
an inexperienced decision maker faces complex, personalized decisions—such as choosing
medical insurance for the first time or attempting to self-diagnose a medical conditions. As
will be discussed later, this soft information w can be efficiently elicited only through human
interaction. In contrast, a large language model (LLM) cannot fully elicit w, as the investor
is unable to articulate soft information in the prompt, and the LLM’s short memory prevents
it from summarizing w from a long, partially relevant communication.

We introduce p € [0, 1] as the investor’s belief about her preference:
p=Pw=1) (1)
Her prior belief about w before consulting an investor is py. Then, the investor’s utility is
Ula,p,01,00) = —p(a—61)° — (1 —p) (a — 6y)°. (2)

We assume that the investor seeks advice from either a human advisor or an LLM before
making a decision. The key focus of the paper is on consultation with the LLM and how it
compares to the human advisor. While our model sheds light on contexts where each advisor

may be better suited, we do not emphasize the investor’s optimal choice of her advisor.

2.1.2 Human advisor

It is widely accepted that soft information can be effectively collected via human interactions
(Liberti and Petersen, 2019). In our context, the human advisor can uncover the investor’s
preference w through interactive dialogue—asking follow-up questions, offering analogies,
and helping the client clarify her preferences when she doesn’t know how to articulate them.

Formally, when the investor chooses the human advisor, a public signal is generated
that perfectly reveals the investor’s preference w. While neither the investor nor the human
advisor knows w beforehand, the investor does possess related information—such as her
income, career status, risk appetite, and spending habit—but does not understand how this
information maps to w. The human advisor, who understands this mapping, elicits the

relevant information and thereby uncovers w. Hence, “preference uncertainty” is eliminated,



and both parties know the target fundamental asset is 6,,.
After w is revealed, the financial advising problem with the human advisor follows classic
cheap talk framework (Crawford and Sobel, 1982). The human advisor has conflicted interest

measured by b > 0, and his utility function is
U(a,0,) = —(a — (0, + b)) (3)

In practice, such bias reflects commission-based incentives, leading the advisor to prefer that
the investor purchase more securities. That is, the advisor’s preferred action is 6, 4+ b, which
is higher than the fundamental value 6, of the financial asset.

The consultation proceeds as follows. The human advisor perfectly observes the realiza-
tion of the fundamental asset value, 6, and then sends an unverifiable signal m” (with the
superscript “A” denoting “human”) to the investor; we specify this signal m” to be the advi-
sor’s recommended action, and call it “recommendation m”” interchangeably. The investor
processes the information in the recommendation and chooses an action a(m") to maximize

her expected payoff as defined in Eq. (2),
max E[U(a,w, 0.)|m"] = —E[(a — 6)*Im"], (4)

where the investor perfectly knows her preference p = w € {0,1} and matches 6,,. This
action in turn determines the payoffs for both parties.

In this setting, the human advisor strategically communicates only the fundamental in-
formation 6, not the investor’s preference w—that is, misreporting w to induce a preferred
action. This simplification is due to our focus on the Al advisor, with the human advisor
serving primarily as a benchmark for comparison. In practice, there are different advisors
within the advisory firm who specialize in 6; and 6, (say 0, and 0, are very different, such as
equity investment versus fixed income.) An initial consultation is typically used to identify
the investor’s needs, and assign her with the specialist tailored to her specific situation. Since

these advisors are different individuals, there is no strategic communication about w.

2.1.3 LLM’s recommendation.

Since large language models (LLMs) are designed to minimize prediction errors, we assume

4

that LLM is unbiased in its recommendation.* However, there are still two frictions that

lead to inefficient communication of the soft information or the investor’s preference w.

4While developers may train LLMs to maximize user subscriptions, this incentive is orthogonal to mis-
aligned recommendations.



First, by its nature, digitizing soft information inevitably incurs information loss (Liberti
and Petersen, 2019)—a challenge that is amplified when the investor herself is “confused.”
Besides the loss of important contextual cues when translating the investor’s thoughts into
prompts, she lacks understanding of what information is relevant and should be provided—
precisely why she is uncertain about her preference w to begin with.”

One may argue that, as long as each prompt is informative, the LLM advisor could even-
tually gather all relevant aspects of the soft information through past interactions. However,
this brings us to our second point: LLMs have a “short memory.” LLMs typically operate
within short, stateless context windows, with knowledge reset after each interaction.® This
is because the Transformer architecture underlying most LLMs scales quadratically with
input length, making long-context processing computationally costly and often impractical.
Moreover, extended prompts—such as including the entire chat history—do not function as
memory effectively and significantly degrades the LLM’s performance (Liu et al., 2023).7

In Section 2.2 below, we model the communication with the LLM as the investor’s optimal
stopping problem with Brownian information flow about soft information w. Now we describe
what happens when the investor seeks recommendation from the LLM at any given pair
beliefs of herself and the LLM’s—both are endogenously determined by the communication
process in Section 2.2. Let p = PE(w = 1) € [0,1] denote the LLM’s belief, and p is public
information: the investor observes the LLM advisor’s pretrained prior py and its belief update
in the communication. However, the investor’s belief p is not observed by the LLM advisor.

Since the LLM is unbiased, its payoff U” is its conjectured investor’s payoff under belief p:
UL(%@ 01,60) = Ul(a,p,th,60) = —p(a— 91)2 —(1=p)(a— 90)2 . (5)

The LLM perfectly observes the realization of fundamental states, #; and 6y. Then, when

the investor seeks recommendation for her action, the LLM sends
mL = ]391 + (1 - }3)90 (6)

The investor understands that m’ is determined in Eq. (6) under the LLM’s belief p, but

does not observe the fundamental realizations #; and 6,. She then chooses her optimal action

®While LLMs have made notable progress in initiating conversations that resemble human dialogue, their
performance crucially relies on the quality of the input (“garbage in, garbage out.”)

SEach response is newly generated based solely on the current context, without incorporating any algo-
rithmic memory of previous responses. Depending on the LLM, systems like ChatGPT may include prior
texts from the same chat session in the current context, creating the impression of memory.

"While emerging solutions like lightweight key-value caches, vector-store retrieval, and weight-editing
offer some mitigation, these approaches are still in development.
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a(m®, p) to maximize her expected utility, under her belief that w = 1 with probability p:

g(p, plm") = max E[U(a,p, 61, 00)| m", p] = —pE[(a —0:)*|m", p] — (1 - p)E[(a — 0p)*|m", p].

(7)
Let a*(m®,p) denote the optimal action and we denote the resulting value as g(p, plm*) .
Then, given any pair of the investor’s belief p and the LLM’s belief p, the investor’s expected

utility when she seeks recommendation is:

9(p,p) = Elg(p, plm")] = E[U (a*(m", p), p, 61, 60)]. (8)

As will be introduced later, the investor seeks recommendation when the communication
stops. Hence, Eq. (8) captures the investor’s stopping value at any pair of beliefs p and p in

the communication to be introduced next in Section 2.2.

Remark 1. The message space of the LLM is restricted to be a single recommendation
m¥. When p € (0,1), fundamental uncertainty remains regarding the realization of 6,,. We
argue that the LLM cannot return both underlying fundamentals, 6, and 6y, which aligns
with the black-box nature of Al outputs. Note that our simple two-state structure serves
as an abstraction of the complex underlying algorithms. Even if the LLM were to provide
intermediate reasoning steps, a typical customer would be unable to infer 6; and 6, in a

meaningful way.

2.2 Communication with the LLM

The investor may initiate multiple rounds of conversations with the LLM to discuss about
her needs, which gradually reveals information about w. The investor and the LLM holds
a prior belief of py and py that w = 1. The communication is in continuous time, starting
at t = 0 with an infinite horizon, and each round of chat lasts time dt. The investor is
impatient: with a Poisson shock of intensity A, the communication ends and she receives a
recommendation immediately.

At every time t, the investor incurs a cost of cdt > 0 if she continues the communication
during the interval [t,t + dt). Whenever the communication stops—either by the investor
voluntarily or by an exogenous Poisson event, the investor seeks recommendation from the
LLM and the game stops. Suppose at time t, the game has not yet stopped exogenously,
and investor stops the communication to seek recommendation. The payoff to the investor

is then

—ct + g(pe, Pr).
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In addition, signals about the investor’s preference w is gradually revealed to both

parties—as we discuss below.

Signals about the soft information w. Signals about the principal’s true preference w
(w = 1 for matching 0, or w = 0 for 50) is revealed by a sequence of signals modeled as a

Brownian diffusion process with drift w. Specifically, the signal process evolves according to
ds; = wdt + od B, (9)

where B = {By, F;,0 < t < 0o} is standard Brownian motion on the canonical probability
space. The signal ds; in (9) is more informative if ¢ is small. At each time ¢, the entire
history of signals, {s,,0 < 7 < t}, is publicly observable. However, as will be discussed later,

the LLM learns from the signals partially due to its short memory.

2.2.1 Belief updating

Investor’s belief p. At every time ¢, the investor’s belief that w = 1, p;, is conditioned on
the history of past communication, or the filtration F; generated from {s,,0 <7 <t}. Let
fi denote the density of s; conditional on w, which is normally distributed with mean wt

and variance o’t, i.e., s; ~ N(0t,0%t). The investor’s posterior belief p; satisfies the Bayes

rule )
poft (s1) + (1 —po) fP (s¢)
The log-likelihood ratio z; = 1 ftpt evolves according to a simple process, with which we derive

the evolvement of the investor’s belief process p. Taking the log-likelihood ratio of (10):

1
2z = 2+ In cho EZ; :zo—i—;(st—;), (11)

and thus
dz = — (dst - 1dt) .
o2 2
From the investor’s perspective, w = 1 with probability p; and signal s; is released according
to ds; = pidt + odB;, where p; =

et

Tremr The evolvement of investor’s belief measured in

log-likelihood ratio is then

1/ et 1 1
dz = ( < ) dt + ~dB,. (12)
g
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Using Ito’s Lemma and z(p;) = In lf’fpz, we show that p; evolves according to the standard

binary state Brownian signal formula (for details, see Appendix A.1),

pel=r),p (13)

dp; =

There are a few thing worth noting. First, the belief process {p;} is a martingale without

a drift term, reflecting prior consistency—the expectation of posterior beliefs equals the
prior. Second, the term % is the signal-to-noise ratio: the numerator equals the gap in drifts
when w = 1 versus when w = 0. Finally, the belief p; is absorbing at p, = 0 or 1: once the

investor becomes certain about her type, there is nothing further to learn.

LLM’s belief p: baseline. As discussed in Section 2.1.3, LLMs have a short memory. In
fact, their knowledge is reset after responding to each prompt, and they operate within short,
stateless context windows. Consistent with this technology constraint, our baseline model
assumes that the LLM advisor exhibits “one-shot memory”—that is, it updates its belief
solely based on signal ds;- from the most recent round of communication. In Appendix A.1,
we use a standard Binomial approximation to show that, under the continuous-time setting,

this form of memory implies the LLM effectively never updates its belief beyond its prior py:
P = Elw = 1]dss-] = po. (14)

Therefore, in the baseline, the LLM’s belief p; remains constant at py, which we interpret as
its pre-trained belief—that is, the fraction of w = 1 in the LLM’s customer base.

This baseline setting is not an oversimplification. Although the LLM’s belief remains
constant, it still meaningfully affects model implications because the pre-training can vary.
Moreover, in a discrete-time setting, the LLM can update its belief based on the most recent
signal, and the key economic insight remains qualitatively consistent with the continuous-
time model presented here.

The baseline captures the following scenario in practice: users who are uncertain about
their needs and unable to articulate such soft information provide prompts that carry minimal
information to the LLM, which, given the last prompt, would then generate recommendations
based on a “typical” customer profile. Meanwhile, the user herself gradually learns about

her preference over time through the communication, as reflected in the evolution of py.

LLM’s belief p: extension. We also consider the extension where the LLM can update
its belief based on the entire communication history, but only partially learns from the sig-

nals {s;}. This case speaks to the future developments, as advances in Al could make the
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technology constraint less binding (see Footnote 7 for emerging solutions.) Even under the
current technology, one straightforward way to augment the LLM’s memory is to feed the
entire chat history into subsequent prompts. Indeed, some LLMs internally incorporate pre-
vious interactions from the same chat session into the current context window—for example,
ChatGPT does so within a single chat.

However, the LLM’s performance degrades significantly when operating over a long con-
text. The Transformer architecture underlying most LLMs correlates every input token (in
the context window) with the whole universe of tokens, making long inputs computation-
ally intensive and less efficient. Empirical work have shown that, LLMs perform best when
key information appears at the beginning or end of the input (due to primacy and recency
effects), but performance degrades significantly when crucial information is placed in the
middle (Liu et al., 2023).

In the model, we assume that for signal ds; in each round of interaction, with probability
k € [0,1), the LLM “absorbs” this signal and uses it to update its belief p;; with probability
1 — K, the LLM misses this signal and does not update its belief. We assume that the events
of missing the signal are independent across time.

We use the LLM’s log-likelihood Z; = In lftﬁt to discuss the evolvement of its belief.
Importantly, if the LLM misses the signal s;, it is equivalent to case where it receives an

alternative signal 5, whose noise is infinite. In this case, the change in Z;, which takes the
same form of Eq. (12), is
1 1
ds, = lim — (dét - 2dt> — 0.

500 G2
In the other case, if the LLM absorbs this signal, the update in its belief should be the same
as that of the investor; that is, dz; = dz;.

Therefore, when measured in log-likelihood ratio, the LLM’s belief update is exactly &
fraction of that of the investor,®
d2; = kdz. (15)

Or equivalently,
t
P +/0 d2, = 20+ Kz — 20). (16)

Eq. (16) implies that the LLM’s belief is a function of the investor’s belief, p;(p;).

80ne can consider the following microfoundation. Let {X;} be iid Bernoulli random variables with
P(X; =1) = k. Then

t tn—1 K 1 tn—1 t
2 — %= 1x dz; = lim E lim 1x,,— (Zs+l — ,zg) = lim E K (Zs+1 — Zi) =K dzy,
0 n—00 0 K—oo 1 K n " n—o0 n " 0
s= =

where the second last equation applied the Law of Large Numbers.
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Note that this extension nests the baseline model when k£ = 0: the LLM never learns from
the conversation, and its belief is fixed at prior ¢y. In the other extreme, x = 1, the LLM
shares the same belief as the principal. In this extension, we assume that s is sufficiently

small, so that the equilibrium shares the same as in the baseline model.

Remark 2. In our model, the investor’s belief p; is a sufficient statistics of past communi-
cation to her. However, she cannot summarize this belief into a prompt to elicit a recom-
mendation from the LLM. This limitation reflects the nature of soft information: while the
investor understands p; in her thoughts, she is unable to articulate it clearly in her prompt.
Moreover, if she were able to partially convey p; to the LLM, the setting would closely
resemble our extension in which the LLM partially learns from the entire communication

history.

Remark 3. In our model, the investor is rational but the LLM in our model is not. Given
the LLM’s learning in (16), the investor conjectures the LLM’s posterior belief p;(p;) based
on her belief p;. If the LLM were rational, it would back out the investor’s belief p; from p, as
well. If both parties were rational, asymmetric information would not arise in our extension

of the LLM’s partial learning.

2.3 Equilibrium Definition

Consultation with the human advisor. Suppose the investor consults with the human

advisor and her preference is revealed as w.

Definition 1. When the advisor is human, an equilibrium consists of the advisor’s signaling

rules, denoted by 7(m"|6,,), and an action rule for the investor a(m”"), such that:

(i) for any realization of 6, [ 7(m"|0,)dm" =1, and if m"* is on the support of 7(-|6,,),

then m* solves max,,» U"(a(m"),6,,) where U"(a,6,,) is given in Eq. (3).

(ii) for each m”, a(m") solves max, E[ U(a,w,6,)] as in Eq. (4).

Consultation with the LLM. Given the evolvement of her belief {p;}, the investor faces

an optimal stopping problem

(SP) supE” {/T e M[—c+ Ag(pe. pe(pe))dt + e‘ATg(pT,ﬁr(pr))} :

>0 0

where her belief p; evolves according to Eq. (13). With probability e=*", the game has

not stopped by time 7, allowing the investor to end communication voluntarily and receive
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9(pr, Pr) in Eq. (8). In the baseline case, p, = po, while in the extension, p,(p,) is a function
of p, as implied by Eq. (16). At any earlier time ¢ < 7, the probability that the game has
not yet ended is e™*; during the next time interval dt, the investor incurs communication

cost cdt, and with probability Adt, the game ends exogenously and she receives g(p, pr).

Definition 2. When the investor consults the LLM, an equilibrium consists of the investor’s

stopping rule 7, the LLM’s recommendation m® () and the investor’s action a(m’) such that:
(i) Stopping time 7 solves the investor’s communication problem (SP);

(ii) The process of p; is given by (12), and the process of p; is implicitly given by (16),

with the baseline case of Kk = 0 and p; = po;

(iii) Given any belief p € [0, 1], the LLM’s recommendation m%(p) solves max,,r UX(m*%, p, 0y, 6;)
and satisfies Eq. (6);

(iv) Given any pair of beliefs p € [0,1] and p € [0,1], the investor’s action a(m”) solves
maXa]E[U(aup7 elaeo)lmL(ﬁ)]

3 Equilibrium

We briefly characterize the equilibrium under the human advisor in Section 3.1 as a bench-
mark for comparison with Al advising. In Section 3.2, we construct the equilibrium with

the LLM advisor and solve it in closed form.

3.1 Human advisor: cheap talk

When consulting a human advisor, communication about the soft information is efficient
and w becomes public. However, as in the standard cheap talk literature (Crawford and
Sobel, 1982), misaligned objectives between the investor and advisor lead to information
loss about the fundamental state 6,. Since the human advisor is biased with b > 0 and his
message m” is non-verifiable, he has an incentive to exaggerate the fundamental state 6, by
sending a higher message m" to induce a higher action a. Anticipating this, the investor
rationally discounts the overly optimistic messages. In equilibrium, only partial information
about 6 can be credibly communicated. The following proposition, as a direct application of

Theorem 1 of Crawford and Sobel (1982), characterizes the equilibrium.

Proposition 1. Suppose b is sufficiently small. There exists a positive integer N(b) such

that for every N with 1 < N < N(b), there exists at least one equilibrium where the support
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of 6., is partitioned into intervals by —oo = 0y < 01 < --- < O = 00, and the human advisor
sends a distinct message mf} for each interval [0;_1,0;). At each threshold 0;, the advisor is
indifferent between adjacent messages:

a(my) + a(mi,)

Given message m?, the investor takes action

¢ (0;1) — ¢ (6;)
O (0;) —D(0;_1)

a; =E[0 |0 € [0;_1,0,)] = po + 0c - (18)

where ¢ and ® are respectively the PDF and CDF of fundamental state 0, ~ N (ju,,, 0?).

Proposition 1 shows that the equilibrium takes the form of a partitional signal structure.
For each distinct message m; corresponding to an interval [f;_1,6;), the investor’s optimal
action in Eq. (18) is the conditional expectation—the truncated normal mean over the inter-
val, reflecting her quadratic loss utility in (2). In equilibrium, the advisor must be indifferent
at each threshold 6;, which requires U"(a(m!),6;) = U"(a(m!.,),0;), or equivalently (17).

We focus on the equilibrium with the most informative signal structure (i.e., the highest
number of partitions N). Since preference uncertainty is resolved, the investor’s expected

utility is depends solely on the residual fundamental uncertainty about 6,,:

N
E[U(a(m"),w,0,)] = = > P([:-1,6;)) - Var(0,, | [0i-1,6:)),

i=1
where Var(6, | [0;_1,6;)) is the variance of a truncated normal distribution over [6;_1,6;].°
The investor enjoys a higher payoff if more information about 6, is transmitted, and the
extent of information loss is determined by the magnitude of the advisor’s bias b. As b
increases, the number of partitions decreases, reducing the investor’s payoff. In the limit as
b — oo, communication becomes uninformative (babbling equilibrium), and the principal

learns only her preference.

9The explicit expression is

Var(0, | [0i-1,0:) = 0% [1+ () — B (0; 1)

%%W'fi)(@ifl)—ai;%ﬂ(@i) ¢ (0i-1) — ¢ (6;)\°
‘(@(ez«)@(ei_l)) ’

where ¢ and ® denote the PDF and CDF of 8, ~ N(p,,,0?), respectively.
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Stopping value g(p,p)

p

Figure 1: Investor’s stopping value g(p,p). Figure shows the investor’s expected utility when seeking
recommendation, g(p, p), as a function of the investor’s belief p in the horizontal axis and the LLM’s belief
p in the vertical axis. Parameters: pu; =1, pug =0, o = 1.

3.2 Al advising: equilibrium construction

We begin by analyzing the investor’s expected payoff given any pair of beliefs (p,p), high-
lighting the effect of inefficient communication of the soft information w. We then construct

the equilibrium of interest and provide a closed-form solution.

3.2.1 Stopping value.

Recall that the investor’s expected payoff when seeking recommendation is given in (8) in

Section 2.1.3. The following lemma characterizes its value.

Lemma 1. (Stopping value) Given any pair of the investor’s belief p and the LLM’s belief

p about w = 1, the investor’s expected payoff when seeking recommendation is

g(p ]5) — _0_2 p(l _ ﬁ)Q + (1 _p)ﬁQ
R (7

(Qﬁ B 1)206 (19)

—p(l— — po)* + 5 |
p( p) (/ul MO) p2+(1_p2

Figure 1 provides an illustration of g(p,p). The core friction of Al advising arises from
the residual preference uncertainty—inefficient communication of the soft information w.
When both the investor and the LLM are certain and agree on w—that is, p = p = 1 or
p = p = 0—the investor enjoys the highest possible payoft, g(p,p) = 0.
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Otherwise, we rewrite (19) as follows to clarify inefficiency affects the investor’s payoft:

9(p,p) = — |pVar(fy | m") + (1 = p) Var(f | m")| —=p(1 — p)E[Apgy,|m*],  (20)

MSE

where Apig,r = E[f;|m"] — E[fo|m"] is the gap in the conditional mean. The last term
captures the direct cost of preference uncertainty. This cost is small when the distributions
of 6, and 6, are close—so that distinguishing between them is unnecessary (i-e., Apigyr is
small), or when the investor herself is certain about her preference (i.e., p is close to 1 or 0)
and can adjust her action accordingly towards 6.

In addition, even though the LLM is unbiased, the investor is also subject to residual
fundamental uncertainty that arises from the preference uncertainty, as captured by the first
two terms in (20) . Since the LLM’s recommendation m” in (6) is a weighted average of
potential fundamentals, it is a noisy signal for either fundamental 6; or §,. (Remark 1 gives
a short discussion why the LLM does not send (61, 6y) as message directly.)

As illustrated in Figure 1, the investor’s payoff is higher when she is more certain about
her preference, that is, as p approaches 0 or 1. This creates an incentive to continue communi-
cation about w before ultimately seeking a recommendation. In the dynamic communication
problem analyzed next, the investor trades off the benefit of learning more about w against
the ongoing cost of communication.

In addition, the principal’s payoff is higher when the LLM’s belief is more aligned with
hers—along the 45-degree line in Figure 1. In the baseline case, where the LLM has only
one-shot memory based on ds;- so its belief remains fixed at its pre-trained value p; = py,
the investor’s payoff is high when she is the typical customer in the LLM’s pre-training. In
the extension case, where the LLM partially learns from the communication, the investor
would enjoy a higher payoff as alignment improves over time.

Note that g(p,p) is the stopping value in the dynamic communication. Since p = py in
the baseline and p is a function of p in the extension, we can express the stopping value as

a function of the investor’s belief: ¢g(p) = g(p, p(p)).

3.2.2 Value function and optimal policy

The dynamic communication problem is stationary and the value function of the investor
depends only on her belief p. Let V(p) denote the investor’s value in state p. We conjecture
that there exits 0 < p < p < 1 such that the investor continues the communication with the
LLM if p € (p,D).

Outside of the continuation region, p ¢ (p,p), the investor immediately seeks recommen-
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dation from the LLM and the game stops. The value function is simply the stopping value
9(p) = g(p,p(p)) in Lemma 1.

For all p € (p,p), the investor incurs cost c to initiate another round of interaction
with the LLM. With probability Adt, the communication ends exogenously and she receives
the recommendation immediately. Otherwise, the investor receives her continuation payoff.
Hence,

V(p) = —cdt + Adtg(p) + (1 — Mdt)E,[V (p + dp)]. (21)

Applying the Ito’s formula to the right-hand side of (21) gives
1
V(p) & —cdt + Adig(p) + (1 = AOE,[V (p) + V'(p)dp + 5V" (p) (dp)°].

Using the law of motion is given in (13), and taking the limit of dt — 0 gives a linear second-

order differential equation for the investor’s value function in the continuation region:

e M o) -V )+ LS v ) =0, @)

All solutions of the differential equation take the following form:
V(p) = Q(p) + Cop#* (L —p)> 7 + Cop2 (1 = p) 7, (23)

where 7 = (/202X + ;. The term Q(p) is one particular solution to (22), and under the
baseline case where p = py, we provide the closed-form Q(p) in Appendix A.3. The two
constants C and Cy are yet to be determined.

The constants are pinned down by the value-matching conditions,

Vi(p)
V(p)

9(p), (24)
(P)- (25)

3
=

Finally, the two equilibrium belief thresholds p and p satisfy two smooth pasting condi-

tions, which are required such that the investor’s strategy solves (SP). Specifically,

V'(p)
V'(p)

g/
/

(p), (26)
(P)- (27)

=

Baseline case: k = 0. In the baseline case, the LLM has only one-shot memory and makes
its recommendation based solely on ds;—, and its belief remains fixed under the dynamic

setting: Py, = Elw = 1]ds;-] = po.
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In this case, we can show that the investor’s optimal stopping thresholds p and p are
symmetric with respect to % To see this, v (p) = V (p) — g (p) captures the option value of
waiting. The differential equation (22) could be rewritten as

p2 (1 _ p)2 "

2 2
p°(1—p)
" 20_2 v (p) °

M (p) =" 59 () —c+

Importantly, g(p) is a quadratic function of p so g” (p) is a constant. It is clear to see that
both the flow benefit of waiting, %g” (p) — ¢, and the volatility % are symmetric
for p around % Intuitively, when the LLM’s belief is fixed, the labels w = 1 or 0 for the
investor’s preference type are interchangeable. In contrast, in the extension case where k > 0,
this symmetry breaks down: the flow benefit of waiting depends on how the LLM’s belief

evolves, which in tern depends on its prior.

Remark 4. The quadratic form of g(p) arises in many other applications as well. When an
economic agent’s payoff is linear in her information, as she also chooses an action based on

that information, the resulting value function becomes quadratic in the information.
The following proposition summarizes the equilibrium in the baseline case.

Proposition 2. When p & (p,p), the investor stops communication and receives g(p,po) in

(19). When p € (p,]), the investor’s value is
V(p) = Qo(p) + C [p>* (1= p)2 7+ p= (1 = p)a+] (28)

where v = /202X + %, and Qo(p) is a particular solution given in (39) in Appendiz A.3.
The constants C' is determined by the value matching condition V(p) = ¢g(p). The optimal
thresholds p,p are symmetric: p+p = 1, and p is determined by smooth pasting V'(p) = ¢'(p).

Figure 2 illustrates the equilibrium. There are a few things worth noting. Since the LLM’s
belief is fixed at p; = pg > %, the investor’s stopping value g(p) and value function V' (p) are
tilted upwards for p > %, where her belief p is more aligned with the LLM’s. However, the
optimal stopping thresholds p,p are symmetric around p = % In the shaded continuation
region, the investor’s value function V'(p) lies above the immediate stopping payoff g(p), so
she chooses to continue communication. Notably, even if the preference uncertainty is fully
resolved, that is p = 1 or p = 0, the investor’s payoff U < 0 due to the residual fundamental
uncertainty: since the LLM does not learn, its recommendation m’ is a noisy signal of the

true fundamental 6,,.
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Figure 2: Optimal policy and value function (baseline x = 0). The figure shows the continuation
region p € (p,p) (shaded area), the investor’s value function V'(p) (red line) and stopping value g(p) = g(p, Po)
(black dotted). Parameters: pu; = 0.3, up =0, 0. = 0.8, 0 = 0.3, A =0.3, ¢ = 0.045, pyp = 0.51.

LLM’s partial learning: the case of x > 0. In this case, for each signal s; generated in
the communication, the LLM absorbs the signal with probability £ > 0. The baseline case
where the LLM only has a one-shot memory could be nested as k = 0. For this extension,
we consider a sufficiently small x, under which the structure of the continuation region in
Proposition 2 remains robust.

As discussed in Section 2.2.1, the update in the LLM’s log-likelihood ratio Z, = In 1?% is

k fraction of that of the investor. The following lemma summarizes the LLM’s belief process.

Lemma 2. The log-likelihood ratio of the LLM’s belief Z; = In 13—; satisfies

2 =20+ k(2 — 20).

Accordingly, the LLM’s belief is a function of the investor’s belief p;:

Do [ (pt/po) }H
1—po [ (1=pt)/(1—po)

P (pt/po) re
1+ 12 [ |

De (pt) =

Under a sufficiently small , the investor continues communication when p € (p,p) and
stops immediately otherwise. Since the LLM also partially learns from the communication,

the optimal thresholds p and p are no longer symmetric around % when py # % Instead,
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Optimal policy and value function (p < [0,1]) Optimal policy and value function (Zoomed p < [0.01, 0.99])

Continuation region Continuation region

J— 029l B ——
Vip)

-0.05 V(p)

-0.1

-0.15

Value

-0.2

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Belief p Belief p

-0.35

Figure 3: Optimal policy and value function (extension x > 0). The left panel shows the full plot for
p € [0, 1] and the right panel shows the zoomed plot p € (0.01,0.99). The figure shows the continuation region
p € (p,p) (shaded area), the investor’s value function V (p) (red line) and stopping value g(p) = g(p, po) (black

dotted). Parameters: u; = 0.3, o =0, 0. = 0.8, 0 = 0.3, A =04, ¢ =0.06, In Po_ — 0.03, x = 0.019.

1-po

learning is skewed towards the LLM’s prior: for example, if py > %, we have p — % > % —p.
For the remainder of the equilibrium, the investor’s value in the continuation region is
given in (22). The two value matching conditions (24) and (25), and the two smooth pasting
conditions (26) and (27) determine the constants Cy, C, and the optimal policies p, p.
Figure 3 provides an illustration of the equilibrium. As shown in the left panel, the in-
vestor’s attains the highest possible payoff, U = 0, when she is certain about her preference—
that is, when p = 0 or 1. If the investor perfectly learns w, the LLM’s posterior belief is also
p =0 or 1 (an infinite z implies an infinite 2). However, the investor stops learning before
reaching p = 0 or 1 in equilibrium. As illustrated by Figure 3, the investor has a higher
incentive to communicate and stops at more extreme p,p when the LLM partially learns

from past communication.

3.3 Comparative Statics of AI Advising

We present a few comparatives statics based on the baseline equilibrium in Proposition 2.
Communication cost c. The investor trades off the gain from continuing communication
to learn about w against the communication cost. As illustrated in Figure 4, when the

communication cost c is larger, the principal learns less as suggested by a higher p and a

lower p—she stops communication when she is less sure about w.
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Figure 4: The effects of communication cost c. The left panel plots the optimal stopping thresholds
p,p as a function of ¢, and the right panel shows the investor’s value at prior V(pg) as a function of c.
Baseline parameters: p; = 0.3, uo =0, 0. =0.8, 0 =0.3, A=0.3, pg =po = 0.5, kK =0.

Preference uncertainty Ap. We discuss how preference uncertainty affects Al advising.
The inefficient communication of soft information w is the core friction when the investor
consults an LLM.

First, we discuss how the magnitude of preference uncertainty affects the equilibrium.
When the distributions of 6; and 6, are close to each other, preference uncertainty is less
consequential, and receiving an impersonalized recommendation from the LLM causes little
harm. Recall that 0, ~ N(uy,02) and 6y ~ N(uo,0?) are independent normal random
variables. In our numerical exercise, we fix the value of yy and vary pg for pg < p1. In Figure
5, the higher is po—or the smaller is Ay = g — po, the investor learns less about w (the
optimal stopping thresholds become less extreme) and enjoys a higher value given the less
consequential preference uncertainty. Intuitively, when the task is simple and personalization
matters less, the investor has less incentive to figure out her exact preferences and she will
still be better off.

Therefore, tasks without distinct contingencies are more suitable for Al advising. For
example, tourism planning is easier, as the destination choice often reflects stereotypical pref-
erences. In contrast, insurance or medical consultations involve much more soft information,
where identifying the correct w is critical.

We also examine the effects of the LLM’s pretraining model or its belief p, = py. As
illustrated in Figure 6, the principal learns more information if the LLM’s belief is more
extreme. Intuitively, if the LLM is trained towards a specific customer type, the investor
benefits from learning more—either because she matches that type or needs to be more

informed herself to adjust the action on her own.
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Figure 5: The effects of preference uncertainty Au. The left panel plots the optimal stopping
thresholds p, p as a function of Ay = 1 — 1o, and the right panel shows the investor’s value at prior V'(po) as
a function of Au. Baseline parameters: ¢ = 0.045, puo =0, 0 = 0.8, 0 = 0.3, A=0.3, pg = po = 0.5, kK = 0.
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Figure 6: The effects of the LLM’s belief p. The left panel plots the optimal stopping thresholds ;D
as a function of p, and the right panel shows the investor’s value at prior V(po) as a function of p. Baseline
parameters: u; = 0.3, uo =0, ¢ =0.045, 6. =0.8, 0 =0.3, A=0.3, po =0.5, Kk =0.

Fundamental uncertainty o2. Last, we analyze the effects fundamental uncertainty,
which is captured by the variance o2 of the fundamental state, 0, or O,. When the advisor
is a human, the investor’s utility is determined by the residual fundamental uncertainty—so
she enjoys a higher payoff when o2 is small.

When it comes to Al advising, the investor is still subject to residual fundamental un-

certainty that arises from inefficient communication of preference w, under which the LLM’s
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Figure 7: The effects of fundamental uncertainty o.. The left panel plots the optimal stopping
thresholds p, p as a function of o, and the right panel shows the investor’s value at prior V'(po) as a function
of o.. Baseline parameters: u; = 0.3, ug =0, c=0.045, 0 =0.3, A=0.3, po =p=0.5, k =0.

recommendation is a noisy signal of the true fundamental. Hence, in Al advising, the in-
vestor also enjoys a higher payoff when o2 is small, as shown in the lower panel of Figure 7.
Interestingly, as shown in the upper panel, the investor’s optimal policies, p and p, do not
vary with fundamental uncertainty. This suggests that the inefficiency in Al advising comes
from preference uncertainty, and fundamental uncertainty does not affect the endogenous

communication about preference w.

4 Empirical Analysis

In this section, we discuss model implications and test them using prompt-based simulations
in LLMs.

4.1 Testable Hypotheses

Building on the theoretical model and its comparative statics, we derive testable hypotheses
that connect the model’s primitives to observable investor behavior and advice outcomes.
Each hypothesis articulates a directional prediction, identifies the underlying mechanism
from the theory, and outlines an empirical strategy for validation.

In a controlled setting, we can simulate the advising process with an LLM using prompt
response logs and resulting portfolio recommendations to directly test several model predic-

tions. These experiments allow us to modify conversation parameters and monitor outcomes
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while keeping other factors constant. There are additional testable hypotheses motivated by
the theory that require observational data (such as records of advisor choice and performance
from a financial platform); we list those in Appendix B.1.

H1 (Investor Learning and Decision Quality): The primary value of interacting
with a memory-less LLM advisor stems from the investor clarifying their own initially un-
certain preferences. A deeper interaction allows the investor to reduce their own “preference
uncertainty,” leading to a final investment decision that is better aligned with their true
objectives, even if the LLM’s output remains generic.

The model posits that the investor is initially “confused” and does not fully understand
her own needs summarized by w. The dialogue with the LLM provides signals that allow
the investor to update her own beliefs about her type, moving her closer to certainty—that
is, her belief about w, p approaches 1 or 0. Because we control the LLM’s information
set to be the last prompt (short memory), its recommendation does not adapt to a deeper
conversation. However, the now better-informed investor can make a more appropriate final
decision based on her sharpened posterior belief.

H2 (Investor Impatience and Early Termination): Investors who face a higher
opportunity cost of time break off LLM conversations sooner and accept portfolios less
tailored to their stated preferences.

In our model, an impatient investor may experience a Poisson “impatience shock” that
prompts them to end the communication early. This premature truncation of the dialogue
results in the investor gathering less information, which in turn leads to a portfolio decision
that is less tailored to the investor’s true preferences. To test this hypothesis, we examine
the relationship between conversation length and the investor’s final portfolio choice.

H3 (Memory Augmentation and Advisor Performance): Providing the LLM
advisor with a form of persistent memory about past interactions will improve its advice
quality.

The theoretical motivation suggests that human advisors naturally retain and recall ear-
lier parts of conversations and the client’s background, unlike a standard LLM which may
lose mid-conversation context due to lack of memory. Enhancing the LLM with tools such as
automatically generated summaries of past chat history should help reduce this information

loss, enabling the LLM to better understand and address the investor’s needs.

4.2 Hypothesis Testing with LLM Simulations

To complement our analytical framework, we use prompt-based LLM simulations, a method-

ological innovation that enables the testing of complex economic theories in realistic, inter-

27



active settings. Unlike traditional laboratory experiments or analytical models, these simu-
lations can generate dynamic, multi-turn conversations that closely approximate real-world
advisory relationships. This approach bridges the critical gap between theoretical rigor and
empirical realism, allowing us to observe how theoretical mechanisms like information ac-
quisition and belief updating operate in practice. This section describes how we construct
investor profiles, implement an LLM-based advisor, and map the discrete simulation envi-

ronment back to the continuous-time model.

4.2.1 Data and Investor Profiles

The baseline for “optimal” advice in our simulations comes from the Vanguard Investor
Questionnaire, a widely used 11-question survey that generates personalized asset-allocation
recommendations based on an individual’s investment horizon, financial stability and risk
tolerance.!® For example, the questionnaire recommends investors with short time horizons
to hold a smaller fraction of equity in their portfolio while those with longer horizons to take
on more risks. Similarly, it notes that a stable income stream allows investors to tolerate
greater market volatility and therefore merits a higher equity weight.

To build our rule-based frictionless benchmark, we first simulate random investor pro-
files. For each of n = 500 hypothetical investors, we randomly select an answer for every
question on the questionnaire, respecting the number of choices available for each item. The
randomization uses a fixed seed to ensure replicability and produces a unique set of responses
for each simulated investor.

We then take each simulated profile and use it to complete the Vanguard questionnaire
on the website, recording the recommended stock/bond allocation for each hypothetical
investor. Each profile in our benchmark is thus defined by: (i) a list of question-answer pairs
that can be expressed in natural language, which correspond to the investor’s underlying
preference w, and (ii) the recommended allocation between equity vs fixed income, returned
by the Vanguard algorithm, which maps to the ideal recommendation wf; + (1 —w)fy without
any frictions. In this way, we obtain a consistent set of simulated investors, grounded in

established industry practice.

4.2.2 Conversation with the LLM Advisor

For each investor profile we simulate a conversation between the investor and an LLM-
based advisor. The LLM we use is the then-state-of-the-art OpenAl GPT-5, accessed via

0The service is available at the website: https://investor.vanguard.com/tools-calculators/investor-
questionnaire/questions. The questionnaires are listed in Appendix B.2.
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an API at temperature 0.75. Conversations are orchestrated through system and developer
messages that clearly specify each agent’s role and information set. The investor’s system
prompt states that she is preparing to set up an investment portfolio and will interact with
a financial advisor. It also includes the full text of her questionnaire profile. As explained
below, the investor chats with the LLM based on this questionnaire but makes portfolio
decisions without it. The advisor’s system prompt specifies that it is a financial advisor
whose objective is to determine the client’s optimal allocation between equities and bonds.
It is instructed to remain in information-gathering mode and to ask diagnostic questions
about financial situation, investment experience, time horizon and risk preferences until
the conversation ends. Importantly, the system prompt explicitly forbids the advisor from
providing any recommendations before being told to do so, ensuring that all intermediate
messages consist only of questions.

The interaction unfolds in discrete rounds:

1. Eliciting the prior. Before any questions are asked, the investor reports her prior
preferred equity allocation. She is prompted to return her intended equity percentage as
JSON, and this value is logged. This step parallels the initial belief py in our theoretical

model.

2. Question—answer loop. A developer message instructs the advisor to “ask your
client one question that will help you identify their optimal split between equities
and bonds.” The advisor generates a question, which we append to the conversation.
The investor’s developer prompt tells her to answer concisely. She answers truthfully
according to her profile questionnaires, and the answer is appended to both the investor
and advisor message lists. In subsequent rounds the developer instructs the advisor to

Y

“ask your client another question,” so that exactly one question is asked per round.
The conversation thus alternates between one question from the advisor and one answer

from the investor.

3. Termination decision. After each round, the simulation consults the pre-drawn
termination schedule (described below) to determine whether the conversation should
stop. If the investor terminates, the question—answer loop ends; otherwise the advisor

is prompted to ask another question.

4. Recommendations. Upon termination the advisor is asked to provide equity-allocation
recommendations in two ways. First, to simulate the memoryless case, the advisor re-
ceives only the most recent question and answer and is instructed to return the optimal

equity allocation for the individual. Second, to simulate memory, the advisor receives
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the entire chat history (including all simulated questions and answers) and is instructed
to produce an optimal equity allocation. In both cases, the advisor’s output must be a
JSON snippet specifying the recommended equity percentage; no narrative explanation
is allowed. For the full-information advisor, the advisor is given the complete investor

profile up front and asked once for the optimal equity allocation.

5. Final decision. Finally, the investor is told that “the advisor recommends an equity
allocation of z %” and is prompted to choose her final allocation. Like the prior, the
final allocation is returned as JSON. This step captures the investor’s own action in the

theoretical model after observing the advisor’s message.

Throughout the conversation, we log every prompt and response. The strict formatting
(e.g., JSON outputs, one question per round, no unsolicited recommendations) reflects an
attempt to control the LLM’s behavior and reduce hallucinations. The advisor’s inability to
update its belief in the memoryless condition comes from receiving only a single question—
answer pair as input; this effectively resets its context window at every termination event.

We implement three variants of the LLM advisor to isolate the effect of memory:

o Advisor without memory. Motivated by the architecture of current LLMs, we sim-
ulate an advisor that cannot recall previous signals. After each prompt, the LLM
uses only the most recent question—answer pair as context to recommend an alloca-
tion. This design captures the short context windows of Transformer models, whose
self-attention complexity scales quadratically in the input length and cannot reliably
capture the entire query history. Wang and Sun (2025) show that even when longer
contexts are available, retrieval accuracy can deteriorate rapidly due to interference
from earlier inputs; the probability of recalling the most recent key—value pair declines
log-linearly as similar distractors accumulate. Our “no-memory” LLM therefore ap-
proximates our baseline model that the advisor updates its prior based on only the
last signal, p; = Ejw = 1|ds;~]. (In the model, the advisor’s belief remains fixed at a

pretraining prior under the continuous time limit.)

e Advisor with memory. In this scenario, the LLM is fed the entire conversation
history as context. It has access to previous answers and can refine its recommendation
as it learns more about the investor. This scenario is our best approximation of an
unbiased human advisor with a transcript of the conversation. This aligns with our
model extension with x = 1: both the investor and the advisor update their belief
based on the full history of signals {s;} before termination; if they share the same

prior, then p; = p,.
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e Advisor with full information. This counterfactual LLM receives the investor’s
entire questionnaire profile at once. It directly observes w and effectively faces no pref-
erence uncertainty. This case can also mimic a human advisor who perfectly elicits
soft information instantaneously, with no bias (b = 0). The full-information advisor’s
recommendation provides an upper bound on achievable accuracy. Note that the ad-
visor’s recommendation may still fall short of the frictionless Vanguard benchmark
because of fundamental uncertainty. While the model assumes that advisors observe
the fundamental realizations 6; and 6y, in practice, the LLM only observes a noisy

signal of these fundamentals.

4.2.3 Termination and Cost of Communication

We cap the interaction at a maximum of eleven rounds to mirror the finite length of the Van-
guard questionnaire. However, an investor does not necessarily complete all eleven rounds,
as the dialogue can end sooner based on one of two mechanisms: exogenous or endogenous
termination. To model impatience or external factors that cut a conversation short, we intro-
duce an exogenous termination probability of 0.10 per round. Before the simulation begins,
we conduct a Bernoulli draw for each round to determine if an “impatience shock” occurs. If a
shock is scheduled for a given round, the conversation stops automatically after that round’s
question and answer are complete. If no exogenous shock occurs, the investor agent makes
an active, endogenous decision to continue or stop. After answering the advisor’s question,
the investor is prompted with a decision frame that explicitly asks them to weigh the costs
and benefits of more interaction: “Your time is valuable, so each round of communication
with the advisor carries a cost. You should choose to continue interacting with the advisor
if and only if your expected informational gain from an additional round of communication
exceeds your subjective cost of communication. Would you like to continue or terminate the
conversation...?” This prompt directly simulates the optimal stopping trade-off.

This dual-termination mechanism serves as a discrete analogue of the continuous-time
optimal stopping problem in our theoretical model. Each question-answer round in the sim-
ulation corresponds to a small increment of time dt. The exogenous termination probability
models the Poisson shock intensity A, while the cost of continuing the conversation mirrors
the flow cost c¢. The endogenous decision to terminate corresponds to the investor choosing
the optimal stopping time 7 once her belief p; makes further interaction suboptimal. The

theoretical problem is expressed as:

(sP) supE~ { [N e+ gl pup))ldt + € g(r,p(p))

>0 0
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where p; is the investor’s belief about her type and g¢(-) is the payoff from acting.

4.3 Empirical Results and Hypothesis Testing

We now present the empirical results from our LLM simulations to test the three main
hypotheses derived from the theoretical model. Our analysis uses data from 500 simulated
investor profiles, each with 5 iterations, yielding 2,500 total observations. The results provide
strong support for the model’s predictions about the role of investor learning, the impact of

communication costs, and the benefits of memory augmentation in Al advising.

4.3.1 Testing H1: Investor Learning and Decision Quality

The first hypothesis posits that LLM advising help investor clarify their own preferences.
Table 1 presents the regression results testing this hypothesis. Across measures, the data
show notable gains in investment accuracy that arise from the advisory process itself.

Investors improved significantly even before receiving any recommendations. As shown
in Columns (1) and (2), accuracy increased by 14.1 percentage points before any advice,
reaching 15.7 percentage points after the advisor’s input. The small 1.6 point boost directly
from recommendations suggests most learning comes from interaction rather than specific
advice.

Interaction intensity is also vital. Results from Columns (3) to (8) show that each addi-
tional round between advisor and investor increased interim accuracy by 0.986 points and
final accuracy by 1.030 points. This implies iterative exchanges help investors gradually
refine their understanding of risk and preferences.

The actual words exchanged drive learning as well. Column (5) shows that every ad-
ditional word spoken by either party increases accuracy by 0.017 points. Columns (6) and
(7) reveal that both advisor words and investor words improve accuracy, with investor input
having a slightly larger impact. Articulating and reflecting on one’s own beliefs proves more
effective than simply receiving advice. The multivariate model in Column (8) adds nuance
to these effects. Once both advisor and investor word counts are included, advisor words
remain a significant predictor of accuracy while investor words become insignificant. This
suggests that while both parties contribute to the learning process, the advisor’s role may
be more complementary than substitutive, helping to structure the conversation and guide
the investor’s self-reflection rather than simply providing direct recommendations.

The consistently strong effects of self-reflection and dialogue, compared to the minor role
of recommendations, suggest the main benefit of LLM advising is in helping investors under-

stand themselves. For Al advisory systems, this means the greatest value lies in designing
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Table 1: Investor Learning and Decision Quality

This table reports regression results examining factors influencing the accuracy of investors’ investment
choices, measured at interim and final stages, as well as accuracy improvements. Columns (1)-(2) display
improvements in investment choice accuracy at pre- and post-recommendation stages. Column (3) specifi-
cally illustrates investors’ interim investment choice accuracy, while Columns (4)-(8) present investors’ final
investment choice accuracy. Accuracy here is defined as 100 minus the deviation from the optimal portfolio
allocation, expressed in percentage points. Independent variables include the number of interaction rounds
(# Rounds, Total # Rounds), total words exchanged, and separately, the number of words contributed by
the advisor and the investor. Standard errors, clustered by investor profile, are shown in parentheses. Profile
fixed effects are incorporated in Columns (3)-(8) to control for investor-specific characteristics. ***, ** and
* denote the 1%, 5%, and 10% confidence level, respectively.

Accuracy Improvement Investor’s Accuracy
Pre-Rec  Post-Rec Interim Final
(1) (2) (3) (4) (5) (6) (7) (8)
# Rounds 0.986%+**
(0.100)
Total # Rounds 1.030%**
(0.150)
Total # Words 0.017%**
(0.002)
Total # Advisor’s Words 0.027%F* 0.021 %
(0.004) (0.007)
Total # Investor’s Words 0.040***  0.011
(0.006)  (0.011)
Constant 14.176%% 15,74
(0.589) (0.682)
Profile FE N N Y Y Y Y Y Y
Clustered by Profile Y Y Y Y Y Y Y Y
Observations 2,500 2,500 9,559 2,500 2,500 2,500 2,500 2,500
Adjusted R? - - 0.521 0.790 0.790 0.790 0.789 0.790
Note: *p < 0.1; ¥p < 0.05; ***p < 0.01
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effective interaction and questioning frameworks to help users consider their choices, rather

than focusing only on recommendation algorithms.

4.3.2 Testing H2: Investor Impatience and Early Termination

The second hypothesis examines whether investor impatience, manifested through early con-
versation termination, undermines the advisor’s ability to provide accurate recommenda-
tions. Table 2 presents regression results analyzing the factors that influence the accuracy

of the Al advisor’s investment recommendations.

Table 2: Investor Impatience and Early Termination

This table reports regression results examining factors influencing the accuracy of the Al advisor’s investment
recommendations. All columns present the accuracy of the advisor’s recommendations, measured as 100
minus the deviation from the optimal portfolio allocation, expressed in percentage points. Columns (1)-(4)
and (6) examine individual factors in isolation, while Column (5) presents a specification including both
advisor and investor word counts, and Column (7) includes the total number of interaction rounds and
the exogenous termination indicator. Independent variables include the total number of interaction rounds
(Total # Rounds), total words exchanged, separately the number of words contributed by the advisor and
the investor, and an indicator for whether the conversation was terminated exogenously rather than reaching
a natural conclusion. Standard errors, clustered by investor profile, are shown in parentheses. Profile fixed
effects are incorporated in Columns (3)-(8) to control for investor-specific characteristics. ***, ** and *
denote the 1%, 5%, and 10% confidence level, respectively.

Accuracy of Advisor’s Recommendation

(1) (2) (3) (4) (5) (6) (7)

Total # Rounds 1.0207%** 0.872%H*
(0.155) (0.187)
Total # Words 0.018%**
(0.003)
Total # Advisor’s Words 0.027#+% 0.018%**
(0.004) (0.007)
Total # Investor’s Words 0.042***  0.016
(0.006)  (0.011)
I{Exogenous Termination} -2.620%F*  -0.962*
(0.471)  (0.567)
Profile FE Y Y Y Y Y Y Y
Clustered by Profile Y Y Y Y Y Y Y
Observations 2,500 2,500 2,500 2,500 2,500 2,500 2,500
Adjusted R? 0.469 0471 0.470 0.469 0471 0.460 0.470
Note: *p < 0.1; **p < 0.05; ***p < 0.01

The results demonstrate a strong positive relationship between interaction intensity and

advisor recommendation accuracy. Column (1) shows that each additional round of interac-
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tion increases the advisor’s recommendation accuracy by 1.020 percentage points, indicating
that extended dialogue enables the advisor to better understand investor preferences and
circumstances. This finding is reinforced by the word-count analyses in Columns (2)-(4).
The decomposition of word contributions reveals interesting dynamics in the advisory re-
lationship. When examined separately, advisor words (Column 3) increase recommendation
accuracy by 0.027 points per word, while investor words (Column 4) show an even larger
effect of 0.042 points per word. However, when both are included simultaneously in Column
(5), the advisor’s words remain highly significant while the investor’s words become statis-
tically insignificant. This pattern, aligned with the findings in Table 1, suggests that while
investor input is valuable, the advisor’s ability to process and respond to that information

is the critical factor in generating accurate recommendations.

Figure 8: Endogenous and Exogenous Terminations

Distribution of Total # Rounds by Termination Type
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This stacked bar chart shows the distribution of conversation rounds by termination type across the dataset.
The x-axis represents the total number of question rounds, while the y-axis shows the absolute count of
cases. Each bar is divided into two categories: Endogenous Termination (blue) and Exogenous Termination
(red). Endogenous termination occurs when the conversation naturally concludes based on the conversation
flow, while exogenous termination happens due to external shocks.

The distribution of the total number of rounds in Figure 8 distinguishes between two
types of conversation endings, highlighting key dynamics of information acquisition. En-
dogenous terminations occur when investors stop early because their beliefs have sufficiently
converged, representing optimal stopping in response to the tradeoff between information

gained and the costs incurred. In contrast, exogenous terminations happen either due to a
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random stopping probability or upon reaching the eleven-question cap, independent of belief
convergence, though the maximum length of 11 rounds is never actually reached. The dis-
tribution reveals that exogenous termination is more frequent in the first few rounds, while
endogenous termination becomes the majority after the third round. This indicates that the
investor actively weighs the tradeoff between gaining more information from conversation
and the cost of communication. Moreover, just a few rounds of conversation are already
quite helpful for the investor to become satisfied.

The central finding regarding investor impatience emerges from the termination analysis.
Column (6) shows that exogenous termination, indicating that conversations ended artifi-
cially rather than reaching natural completion, reduces advisor recommendation accuracy by
2.620 percentage points. This substantial penalty demonstrates that premature conversation
endings significantly impair the advisor’s performance. The effect remains significant even
when controlling for interaction intensity in Column (7), where exogenous termination still
reduces accuracy by 0.962 percentage points despite the inclusion of total rounds as a control
variable.

These results provide strong support for H2, indicating that investor impatience creates
meaningful costs in advisory quality. The consistent negative impact of early termination,
combined with the positive effects of extended interaction, suggests that the full advisory
process requires adequate time and engagement to function effectively. For Al advisory
systems, this highlights the importance of designing mechanisms that encourage sustained

engagement and discourage premature exit from the advisory process.

4.3.3 Testing H3: Memory Augmentation and Advisor Performance

The third hypothesis examines whether providing LLM advisors with persistent memory
improves their performance relative to memoryless systems. Figure 9 presents the results
testing the benefits of memory augmentation.

The visualization demonstrates a clear hierarchy in recommendation quality based on
information access: scenarios where the advisor has access to all available information in-
cluding the investor’s complete profile achieve the highest accuracy, followed by scenarios
where the advisor has access to the complete conversation history, while scenarios where the
advisor only sees the current question perform the worst. This strongly supports Hypoth-
esis 3, illustrating that both conversation memory and comprehensive profile information
significantly enhance Al advisor performance. These results underscore that memory aug-
mentation and full access to user information are both valuable for generating accurate

investment recommendations.
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Figure 9: Memory Augmentation and Advisor Performance

Advisor Recommendation Accuracy by Information Access
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This bar chart compares Al advisor recommendation accuracy across three information access scenarios:
No Memory (advisor only sees the current question), Full Memory (advisor has access to the complete
conversation history), and Full Info (advisor has access to all available information including the investor’s
complete profile). The y-axis shows mean recommendation accuracy as a percentage, with higher values
indicating better recommendation quality and closer to the optimal equity allocation. Error bars represent
standard errors.
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4.3.4 Summary of Empirical Findings

The empirical results provide strong support for all three hypotheses derived from the theo-
retical model. H1 demonstrates that the primary value of LLM advising comes from investors
clarifying their own preferences through self-reflection rather than receiving increasingly per-
sonalized recommendations, with each additional round improving accuracy by 1.03 percent-
age points and each word exchanged contributing 0.017 points to accuracy. H2 reveals that
investor impatience, manifested through early conversation termination, significantly under-
mines advisor performance, with exogenous termination reducing recommendation accuracy
by 2.62 percentage points. H3 shows that memory augmentation substantially improves Al
advisor performance, with scenarios providing full information access achieving the highest
accuracy, followed by full memory access, while no-memory scenarios perform worst.

The ability to generate large-scale, realistic simulations (2,500 conversations across 500
profiles) while maintaining the complexity of individual interactions provides unprecedented
opportunities to test theories that depend on realistic communication patterns and adaptive
behavior. By allowing researchers to observe mechanisms like optimal stopping in a practical
setting, this methodology opens new possibilities for economic research in domains where
human behavior is context-dependent and communication plays a central role. It offers a
promising path forward for both theoretical development and the design of practical Al

systems.

5 Conclusion

This study models the interaction between human and Al financial advisors as a dynamic
optimal stopping game under two layers of uncertainty. We find that human advisors excel
at interpreting soft, subjective information and clarifying ambiguous investor goals, while
AT advisors provide unbiased, scalable recommendations but struggle to process unspoken
preferences. This “soft information gap” limits the efficiency of Al-driven advice in complex
decision-making contexts. Our results show that advisor value depends on the clarity of
investor preferences. When goals are uncertain or evolving, human advisors’ interpretive
strengths can outweigh their incentive biases. Conversely, when preferences are well-defined,
unbiased Al advisors can match or outperform humans. Moreover, in contexts where human
advice is heavily biased, Al guidance offers a clear advantage.

This work contributes a theoretical framework that integrates strategic communication,
advisor incentives, and the role of soft information, extending classic models and comple-

menting recent empirical findings on robo-advisors and generative Al. By formalizing the
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inefficiencies created by digitizing soft information, we highlight key trade-offs in advisory
relationships and set the stage for deeper integration of Al in finance.

A key methodological innovation of this study is the use of LLM simulations to opera-
tionalize and test our theoretical framework. By simulating realistic advisory interactions,
we demonstrate how LLMs can serve as scalable, controlled environments for theory valida-
tion and refinement. This approach not only bridges theoretical and empirical analysis but
also opens new avenues for using Al-driven simulations in behavioral finance and decision
sciences.

Practically, our findings support a hybrid advisory approach. Novice or uncertain in-
vestors may benefit from initial human interaction, while experienced clients with clear
goals can rely on Al platforms for efficient, unbiased advice. Enhancing Al systems with
better memory and context-handling could further reduce information loss. Policymakers,
meanwhile, should ensure that Al-driven advice remains transparent, unbiased, and aligned
with fiduciary standards.

Future research could explore hybrid human—AI models, adaptive Al systems with ex-
tended memory, and applications in other fields such as medical or legal advising. Our
framework provides a foundation for advancing the theory and practice of financial advice
in the age of Al
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A Technical Appendices

A.1 Additional Details for Section 2.2

In this part, we provide omitted details for the communication with the LLM.
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Derivation of Eq. (13) . Since pi(2) = Ito’s Lemma implies

1+ zt0

et \’ 1 et \" 9
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dBt ezt

The third equation uses the evolvement of z; in (12), (dz)* = and py(2) = 155

Derivation of p; = E(w = 1|ds;-) (baseline). We use the following Binomial approxi-
mation of the process of Brownian motion. The investor observes the whole binomial tree
whereas the LLM updates its belief only based on the last signal. Specifically, The probability

that the particle goes up is
=05+ zix/At,

g

and the particle goes down is

1—7r—05——\/At
20

and the size of jump is

u=ocVAt, d=—ocVAL
For a particle that starts from zero, we have
Tu+(1—md=Q2r—1)u= Y VAt x oAt = wAt,
o

which means it has a drift of wAt.
Suppose the particle goes up in the last round. The posterior belief of the LLM is

]5 o W(w = 1)ﬁ0 . (05 + % V At) ]30
t — ~ ~ — .
m(w = 1)po + m(w = 0)(1 — po) (0.5 + ix/m) Po + 0.5(1 — po)

Under the contmuous time setting where At — 0, the above equation becomes p;, =
lim (0.5+ 55 VAL) o _
A0 (o) 5+21a\ﬁ)po+0 5(1—po) = Po.
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A.2 Proof of Lemma 1

Proof. The investor understands that the recommendation m” is based on the LLM’s belief

p and satisfies
m"(p) = por + (1 — p)bo. (29)

The investor chooses her optimal action a(m’) to solve
max E[U(a, p,0y,00)] = —pE[(a — 61)?|m*] — (1 — p)E[(a — 6y)|m*].
Her optimal action is
a(m”) = pE[fy | m"] + (1 - p) Elfo | m"]. (30)

From the investor’s perspective, 0, 6 and m” in (29) are normal random variables. Hence,

the conditional expectation of states given recommendation m’ are

. p ) )

Hom =B |m") =+ s m" = P — (1= p)uo, (31)
_ N L 1 _ﬁ L N N

toolm = E[0o | m™] = po + - [m —pp — (1= p)uo]' (32)

The investor’s expected utility given any recommendation m’ is then

E[U(a(m"), p, 01, 00)[m"] = —a(m")? + 2a(m") [ppo,m + (1 = p)tigyim| — PE[6|m"] — (1 — p)E[65|m"]
= — [pVar(8y | m") + (1 = p) Var(fy | m")| =p(1 = p) (16, m = Haolm)”-

MSE

The conditional expectations jig, jm, tg,m are given in (31) and (32). The conditional variance

~ ~ ov(Gr mL)2 —5)242 = p2 o2
Var(f, | mt) = Var(0,) — Cvéf(l;nL)) = ﬁ(,}+g)_ﬁ;2 and Var(y | mt) = ﬁﬁ(ﬁ‘ Now we take

expectation over m”(p) in (29) to calculate the investor’s expected utility when she seeks

recommendation,

9(p. D) =E[E[U(a(m"), p, 61, 8y)[m"]]

p(1—p)*+ (1 —p)p?
_ ap(l=p)P+ (1 -p)p®

R R el (OR

Qﬁ_]_ L A ~
W{m — PH1 — (1 _p)ﬂo]}

(%—D%q
P24+ (1-p)2)

Note that g(p,p) is a quadratic function in p. ]
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A.3 Proof of Proposition 2

Proof. Step 1. We show that the principal continues if p € (p,p) and stops to seek final

recommendation if p = p or p. In addition, p +p = 1 so that p and p are symmetric around
1

5
To see this, we consider the following adjusted value function

v(p)=V(p)—g(p), (33)

which captures the option value of waiting. When waiting is strictly optimal, v (p) > 0. We
rewrite the HJB in the continuation region, (22), and boundary conditions in terms of v.
Plugging V (p) = v (p) + g (p) in (22) we have

p2 (1 _p)2 "

57 g@ﬁ—c+gﬂ£:@ﬂﬂwl

202

v (p) =

Importantly, g(p) is a quadratic function of p so ¢” (p) is a constant.

First, note that both the flow benefit of waiting 2 (1 2 i g" (p) —c and the volatility 2 M
are larger when p is close to 2 5 and smaller when p is close to 0 or 1. Hence, we conJecture
that the principal continues if p € (p,p) and stops to seek final recommendation if p = p or

p. The boundary conditions in terms of v(-) are

U(p) = O,U/(p) =0, U(ﬁ) = O’U/(T)) = 0.

Second, both the flow benefit of waiting % g" (p) — ¢ and the volatility (27217)2 are
symmetric for p around 0.5. Intuitively, the underlying # = 0 and 1 indicates borrower type
(matching 0 ;) and are interchangeable. Therefore, p+p = 1. Also, the symmetry means that
there exists a critical upper bound learning cost ¢ < ¢ under which v( ) > 0 and the above
waiting solution holds.

Step 2. We solve for the differential equation in closed form. We rewrite the differential

equation in log-likelihood ratio z = In ﬁ, so that p(z) = 1_6:62, 1—p(z) = 1+ —. Note that

P 1 B
p(z) = 2(p) = %D"i_ﬁ =p(1—p). (34)

Define W (z) = V(p(z)). Then
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W,

. Then second derivative
p(1-p)

or equivalently V'(p) =

V) = o

Ld [ w11 o
=i p(l_p)]ZZ(p) lp( ]— (Wee = (1 = 2p)W2].

dz [p(1—p)|  p*(1—p)>

Hence, the differential equation (22) becomes

L. —a-2mw) =0 (36)

e+ Agln) ~ W) + 5

Now we substitute W (z) = u(z)W(z) and choose u(z) to remove the W, term in (36). Then
W, = qu + UJWm sz = uzzW + ZUsz + UWzm
Using them in (36), we have:

—c+ Ag(p(2) — ulW] + 5= {ulWe. + 202 — (1= 2p) u] W + [z — (1= 2p(2))u] W} = 0.

202

To eliminate the W, term, impose

2u, — (1-2pJu=0 & Qif_lp,_(j)p_;(;—lip) (37)
Integrate w.r.t. p, we need to set
u(z) = /p(2)(1 = p(2)),
and then the differential equation becomes
W, + [“ - (1u_ 2p)us 2A02] W+ 202[Ag(p) — ] = 0. (38)

From the definition of u function in (37), we know that “= = %. Then

() )
dz\u/) u w/) '
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which implies the coefficient in front of W in (38) is a constant:

2z 1 - 2 z d z z 2 ]- - 2 z
Uzz ( p)u = p/(2)— (u) + <u> — 7( p)u
U U dp \ u U U
1—2p\? (1—2p)? 1
— (1 —p)-(—1 — - .
=) D+ (7)) -5 ;
Therefore, with the substitution of z = In ;£ and W(z) = W(z) = Vo)
p V/p(2)(1-p(2) V/p(2)(1-p(2))

original differential equation in (22) could be rewritten as
W.. — (i +2X0)W + 20 [Ag(p) — ] = 0.
Let v = \/m. The homogeneous solution of the above differential equation is
W(z) = Ae*” + Be ™.
Hence, using e* = ﬁ, the homogeneous solution of the original differential equation (22) is
V(p) = W(p(z) = ulp)W(z) = Cip"* 2 (1 = p) 72 4 Cop 2 (1 — ).

As for the particular solution,

1 1 11 1 1 11
PP, (1455 =)+ B (14 55—
(39)
where B, (a,b) = [§t**(1 —t)*~1dt is the beta integral, and qo, q1, g2 are the coefficients for

stopping value g(p) = qo + qip + g2p” in (19).
Step 3. Last, we show that A = B from the boundary conditions and the symmetric

o’ \go

Qolp) = ao—5 >

A

+(q1+q2)p+

property that p+p = 1.
0

B Appendices for Empirical Exercise

B.1 Hypotheses Testable via Observational Data

The second set of hypotheses involves predictions that can be examined using real-world
observational data, such as records from a financial platform offering both human and LLM-
based advising. In our context, Yingmi Wealth’s Qieman (meaning "Hold On"), which is an

intelligent investment advisory platform in China, provides a useful example: some investors
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on the platform may choose to consult a human financial advisor, while others use an Al
advisor. By leveraging data on these choices, alongside investor characteristics and outcomes,
we can potentially test how the model’s mechanisms play out in practice.

H4 (Preference Uncertainty and Advisor Choice): Investors who are more uncer-
tain about their own financial goals or risk preferences are more likely to choose a human
advisor over an LLM-based advisor.

The theoretical setup suggests that when investors are unsure about their preferences,
such as unclear risk tolerance or retirement goals, human advisors may be better equipped to
interpret nuanced soft information through interactive conversation compared to Al-based
tools. This advantage is further supported by the model’s ability to account for uncertainty
in understanding investor preferences, which suggests that human advisors are more effective
in dynamically clarifying the needs of investors with less self-awareness.

To test this hypothesis, we propose analyzing observational data on advisor selection
based on investors’ self-reported uncertainty. One approach is to use survey or onboarding
data to construct a metric of ex ante preference uncertainty. This metric could be derived
from variability in responses to risk tolerance questions or the absence of a clear investment
goal. Using such data, a regression or discrete-choice model could be estimated to determine
the probability of selecting a human advisor versus an Al advisor as a function of this
uncertainty metric. The prediction is that investors with greater preference uncertainty will
exhibit a significantly higher likelihood of opting for human advisors.

H5 (Extreme Investor Types and AI Adoption): Investors with extreme initial risk
profiles are more likely to opt for the LLM advisor, especially those whose risk assessment
falls in the very conservative or very aggressive ends of the distribution.

The intuition from the model suggests that for extreme investor types, those who are
either highly risk-averse or highly risk-seeking, the potential downside from any misalignment
in the AI’s recommendations is relatively smaller. This arises because even if the Al’s
recommendations are slightly off, they will still be close to the investor’s true preferences or
optimal strategy. On the other hand, human advisors with biases—such as those stemming
from sales commissions—introduce additional "cheap-talk" costs. This inherent impartiality
of the LLM makes its advice more appealing to investors situated at the spectrum’s extremes.

To test this hypothesis, empirical analysis can be conducted by studying how investors’
risk profiles correlate with their choice of advisor. Specifically, using data on initial risk
scores, such as scores derived from risk assessment questionnaires, we can examine whether
investors who fall into the lowest or highest quantiles of risk tolerance are more likely to opt
for the LLM over human advisors. A probit or logit regression can be used where the decision

to adopt the LLM is regressed on indicators for "very low risk tolerance" and "very high risk
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tolerance," controlling for other relevant factors. Positive coefficients on these indicators
would support the hypothesis.

H6 (Commission Incentives and Advisor Choice): The adoption of the LLM
advisor will be higher in settings where human financial advisors are paid on commission, as
opposed to a fee or salary basis.

The model suggests that when human advisors have incentives to influence clients, such
as earning commissions from selling specific products, their advice becomes more biased
and less credible. In such situations, the informational value of human advisors’ cheap-talk
messages decreases, leading investors to favor the unbiased Al advisors. To test this theory,
researchers could explore variations in compensation structures either across different regions
or over time. For example, comparing adoption rates of LLM advisors in settings where some
branches of a financial platform rely mainly on commission-based pay while others use fixed
salaries.

A regression analysis can be employed with the proportion of investors opting for Al
advisors as the dependent variable. The primary independent variable would measure the
strength of commission-based incentives for human advisors. It is expected that stronger
commission incentives or a shift toward a commission-heavy compensation model would cor-
relate with increased Al advisor adoption. Establishing that investors choose LLM advisors
significantly more often in high-commission contexts would offer evidence supporting the
hypothesis.

H7 (Investor Experience and Advisor Performance): Among more experienced
or financially sophisticated investors, those who effectively know their type with greater
precision, the performance gap between the LLM and a human advisor is smaller and may
even reverse in favor of the LLM.

The idea is that experienced investors can convey their objectives and constraints more
clearly or already understand them well, so a human advisor’s ability to uncover soft infor-
mation becomes less critical. According to the model, when the investor’s type is already
known or obvious, the human advisor’s traditional edge in interpreting the investor’s needs
vanishes, leaving only the downside of the human’s potential bias versus the Al’s objectiv-
ity. In such cases, the neutral LLM advisor could perform just as well or better in aligning
recommendations with the investor’s true preferences.

To test this hypothesis, observational data can be analyzed, focusing on variables related
to investor experience, such as years of investment experience, trading volume, or financial
literacy scores. This data would also need measures of advice outcomes, like realized portfolio
returns, risk-adjusted performance, or consistency with stated goals. An empirical strategy

could involve a regression analysis, where an interaction term between investor experience
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and advisor type measures the relative effectiveness of Al and human advisors. Specifically,
the hypothesis predicts that the interaction term (Experience x LLM) will have a positive
coefficient in the regression, indicating that the performance of Al advisors improves as

investor experience increases.

B.2 Vanguard Questionnaire

1. Once you start withdrawing money from your investments, you plan to spend it over

a period of...

11-15 years
More than 15 years

3. When it comes to investing in stock or bond mutual funds or ETFs (or individual

stocks or bonds) you would describe yourself as...
(a) Very inexperienced
(

b) Somewhat inexperienced

(
(d

)
)
¢) Somewhat experienced
) Experienced

)

(e) Very experienced
4. You plan to begin taking money from your investments in...

(a) 1 year or less
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(b) 1-2 years
(c) 3-5 years

)
)
(d) 6-10 years
(e) 11-15 years
)

(f) More than 15 years

. Your current and future income sources (for example, salary, social security, pensions)
are...

(a) Very unstable
(b) Unstable

d

)
)
(¢) Somewhat stable
(d) Stable
)

(e) Very stable

. From September 2008 through October 2008, bonds lost 4%. If you owned a bond

investment that lost 4% in two months, you would...

(a) Sell all the remaining investment
(b) Sell a portion of the remaining investment
(c¢) Hold onto the investment and sell nothing
(d) Buy more of the remaining investment
. The below table shows the greatest 1-year loss and the highest 1-year gain on 3 different
hypothetical investments of $10,000.
o Investment A (gain $593; loss -$164)
o Investment B (gain $1,921; loss -$1,020)

o Investment C (gain $4,229; loss -$3,639)
Given the potential gain or loss in any 1 year, you would invest your money in...

(a) minimal volatility
(b) moderate volatility

(¢) most volatility
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8. During market declines, you tend to sell portions of your riskier assets and invest the

money in safer assets. (R)

a) Strongly disagree

(
(b) Disagree

d

)
)
(¢) Somewhat agree
(d) Agree
)

(e) Strongly agree

9. You would invest in a mutual fund or ETF (exchange-traded fund) based solely on a

brief conversation with a friend, co-worker, or relative. (R)
(a) Strongly disagree
(b) Disagree

)
)
(c) Somewhat agree
(d) Agree
)

(e) Strongly agree

10. From September 2008 through November 2008, stocks lost over 31%. If you owned a

stock investment that lost about 31% in three months, you would...

a) Sell all the remaining investment

(a)
(b) Sell a portion of the remaining investment

(c) Hold onto the investment and sell nothing

(d) Buy more of the remaining investment

11. Generally, you prefer an investment with little or no ups and downs in value, and you

are willing to accept the lower returns these investments may make. (R)

a

b

(a) Strongly disagree
(

Disagree

)
)
(¢) Somewhat agree
(d) Agree
)

(e) Strongly agree

Note: Questions marked with (R) are reverse-scored items where higher numerical re-

sponses indicate lower risk tolerance.
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